Cation distribution in nanocrystalline ZnFe(2)O(4) investigated using x-ray absorption fine structure spectroscopy.

Physics Division, PINSTECH, PO Nilore, Islamabad, Pakistan.
Journal of Physics Condensed Matter (Impact Factor: 2.22). 10/2009; 21(40):405303. DOI: 10.1088/0953-8984/21/40/405303
Source: PubMed

ABSTRACT X-ray absorption fine structure (XAFS) spectroscopy has been employed to investigate the cation distribution in nanocrystalline zinc ferrites (ZnFe(2)O(4)), synthesized in acidic and basic media at different temperatures. By using (Zn(1-x)Fe(x))[Ni(x)Fe(2-x)]O(4) as model compounds we have determined cation distribution in nanosize ZnFe(2)O(4). The cation distribution for samples synthesized at low temperature (400 °C) is (Zn(0.5)Fe(0.5))[Zn(0.5)Fe(1.5)]O(4) for urea- and (Zn(0.75)Fe(0.25))[Zn(0.25)Fe(1.75)]O(4) for citric-acid-based samples. These results show that samples synthesized at and above 600 °C have a local structural environment identical to that of bulk ZnFe(2)O(4).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The perovskite based SrFeO{sub 3} and SrFe{sub 0.5}Nb{sub 0.5}O{sub 3} materials have been synthesized by solid state reaction methods. The structural properties are investigated using a combination of X-ray diffraction and X-ray absorption fine structure spectroscopic techniques. From the Rietveld refinement of the X-ray diffraction data it has been observed that SrFeO{sub 3} has a simple cubic perovskite structure, which is consistent with the previous literature results; whereas SrFe{sub 0.5}Nb{sub 0.5}O{sub 3} shows a tetragonal structure within P4mm space group. X-ray absorption results demonstrate that the valence state of Fe in SrFeO{sub 3} is (IV); however, it changes to (III) when 50% Nb{sup 5+} is substituted at the Fe sites. - Highlights: {yields} Structural studies by employing XRD and XANES spectroscopic techniques. {yields} Rietveld refinement confirmed SrFeO{sub 3} has cubic structure, space group Pm-3m. {yields} It is revealed that SrFe{sub 0.5}Nb{sub 0.5}O{sub 3} has tetragonal structure, in P4mm space group. {yields} From XANES results it is observed that Fe has valence state of (IV) in SrFeO{sub 3}. {yields} Doping of 50% Nb{sup 5+} at Fe sites, changes Fe valence to (III) in SrFe{sub 0.5}Nb{sub 0.5}O{sub 3}.
    Materials Characterization 10/2011; 62(10). · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix.
    The Journal of Chemical Physics 02/2013; 138(5):054702. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zn1-xNixFe2O4 (0.0 B x B 1.0) nanoparticles are prepared by sol–gel method using urea as a neutralizing agent. The evaluation of XRD patterns and TEM images indicated fine particle nature. The average crystallite size increased from 10 to 24 nm, whereas lattice parameters and density decreased with increasing Ni content (x). Infrared spectra showed characteristic features of spinel structure along with a strong influence of compositional variation. Magnetic measurements reveal a maximum saturation magnetization for Zn0.5Ni0.5Fe2O4 (x = 0.5); however, reduced value of magnetization is attributed to the canted spin structure and weakening of Fe3?(A)–Fe3?(B) interactions at the surface of the nanoparticles. Impedance analysis for different electro-active regions are carried out at room temperature with Ni substitution. The existence of different relaxations associated with grain, grain boundaries and electrode effects are discussed with composition. It is suggested that x = 0.5 is an optimal composition in Zn1-xNixFe2O4 system with moderate magnetization, colossal resistivity and high value of dielectric constant at low frequency for their possible usage in field sensor applications.
    Journal of Sol-Gel Science and Technology 08/2014; · 1.66 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014