Plasma membrane association of p63 Rho guanine nucleotide exchange factor (p63RhoGEF) is mediated by palmitoylation and is required for basal activity in cells

Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 08/2011; 286(39):34448-56. DOI: 10.1074/jbc.M111.273342
Source: PubMed

ABSTRACT Activation of G protein-coupled receptors at the cell surface leads to the activation or inhibition of intracellular effector enzymes, which include various Rho guanine nucleotide exchange factors (RhoGEFs). RhoGEFs activate small molecular weight GTPases at the plasma membrane (PM). Many of the known G protein-coupled receptor-regulated RhoGEFs are found in the cytoplasm of unstimulated cells, and PM recruitment is a critical aspect of their regulation. In contrast, p63RhoGEF, a Gα(q)-regulated RhoGEF, appears to be constitutively localized to the PM. The objective of this study was to determine the molecular basis for the localization of p63RhoGEF and the impact of its subcellular localization on its regulation by Gα(q). Herein, we show that the pleckstrin homology domain of p63RhoGEF is not involved in its PM targeting. Instead, a conserved string of cysteines (Cys-23/25/26) at the N terminus of the enzyme is palmitoylated and required for membrane localization and full basal activity in cells. Conversion of these residues to serine relocates p63RhoGEF from the PM to the cytoplasm, diminishes its basal activity, and eliminates palmitoylation. The activity of palmitoylation-deficient p63RhoGEF can be rescued by targeting to the PM by fusion with tandem phospholipase C-δ1 pleckstrin homology domains or by co-expression with wild-type Gα(q) but not with palmitoylation-deficient Gα(q). Our data suggest that p63RhoGEF is regulated chiefly through allosteric control by Gα(q), as opposed to other known Gα-regulated RhoGEFs, which are instead sequestered in the cytoplasm, perhaps because of their high basal activity.

Download full-text


Available from: Mohamed Aittaleb, May 06, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In normal and diseased vascular smooth muscle (SM), the RhoA pathway, which is activated by multiple agonists through G protein-coupled receptors (GPCRs), plays a central role in regulating basal tone and peripheral resistance. Multiple RhoA GTP exchange factors (GEFs) are expressed in SM, raising the possibility that specific agonists coupled to specific GPCRs may couple to distinct RhoGEFs and provide novel therapeutic targets. This review focuses on the function and mechanisms of activation of p63RhoGEF (Arhgef 25; GEFT) recently identified in SM and its possible role in selective targeting of RhoA-mediated regulation of basal blood pressure through agonists that couple through G(αq/11).
    Trends in cardiovascular medicine 08/2012; 22(5):122-7. DOI:10.1016/j.tcm.2012.07.007 · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) signal through G-protein coupled receptors (GPCRs) which couple to multiple G-proteins and their effectors. These GPCRs are quite efficacious in coupling to the Gα(12/13) family of G-proteins, which stimulate guanine nucleotide exchange factors (GEFs) for RhoA. Activated RhoA subsequently regulates downstream enzymes that transduce signals which affect the actin cytoskeleton, gene expression, cell proliferation and cell survival. Remarkably many of the enzymes regulated downstream of RhoA either use phospholipids as substrates (e.g. phospholipase D, phospholipase C-epsilon, PTEN, PI3 kinase) or are regulated by phospholipid products (e.g. protein kinase D, Akt). Thus lysophospholipids signal from outside of the cell and control phospholipid signaling processes within the cell that they target. Here we review evidence suggesting an integrative role for RhoA in responding to lysophospholipids upregulated in the pathophysiological environment, and in transducing this signal to cellular responses through effects on phospholipid regulatory or phospholipid regulated enzymes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
    Biochimica et Biophysica Acta 09/2012; 1831(1). DOI:10.1016/j.bbalip.2012.09.004 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Short hairpin RNAs targeting 66 Rho-GEFs were screened for inhibition of chemotaxis. Six Rho-GEFs (p63RhoGEF, Trio, Duet, Net1, Frabin/Fgd4, and AAH33666) were found to be required for the serum-induced chemotactic migration of MDA-MB-231 human breast carcinoma cells. Knockdown of p63RhoGEF suppressed serum-induced RhoA activation and chemotaxis and caused the aberrant formation of multiple lamellipodial protrusions after serum stimulation while control cells formed a single polarized lamellipodium. These results indicate that p63RhoGEF plays a crucial role in serum-induced chemotaxis by limiting lamellipodial protrusion to one direction via RhoA activation.
    FEBS letters 02/2013; 587(6). DOI:10.1016/j.febslet.2013.01.043 · 3.34 Impact Factor
Show more