Article

Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.68). 08/2011; 279(1729):722-31. DOI: 10.1098/rspb.2011.1023
Source: PubMed

ABSTRACT Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

0 Bookmarks
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Leading Edge Vortex (LEV) is a universal mechanism enhancing lift in flying organisms. LEVs, generally illustrated as a single vortex attached to the wing throughout the downstroke, have not been studied quantitatively in freely flying insects. Previous findings are either qualitative or from flappers and tethered insects. We measure the flow above the wing of freely flying hawkmoths and find multiple simultaneous LEVs of varying strength and structure along the wingspan. At the inner wing there is a single, attached LEV, while at mid wing there are multiple LEVs, and towards the wingtip flow separates. At mid wing the LEV circulation is ~40% higher than in the wake, implying that the circulation unrelated to the LEV may reduce lift. The strong and complex LEV suggests relatively high flight power in hawmoths. The variable LEV structure may result in variable force production, influencing flight control in the animals.
    Scientific Reports 01/2013; 3:3264. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel scheme for the numerical simulation of fluid–structure interaction problems. It extends the volume penalization method, a member of the family of immersed boundary methods, to take into account flexible obstacles. We show how the introduction of a smoothing layer, physically interpreted as surface roughness, allows for arbitrary motion of the deformable obstacle. The approach is carefully validated and good agreement with various results in the literature is found. A simple one-dimensional solid model is derived, capable of modeling arbitrarily large deformations and imposed motion at the leading edge, as it is required for the simulation of simplified models for insect flight. The model error is shown to be small, while the one-dimensional character of the model features a reasonably easy implementation. The coupled fluid–solid interaction solver is shown not to introduce artificial energy in the numerical coupling, and validated using a widely used benchmark. We conclude with the application of our method to models for insect flight and study the propulsive efficiency of one and two wing sections.
    Journal of Computational Physics. 01/2015; 281:96-115.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the asymmetry in the upward and downward bending of insect wings is well known, the structural origin of this asymmetry is not yet clearly understood. Some researchers have suggested that based on experimental results, the bending asymmetry of insect wings appears to be a consequence of the camber inherent in the wings. Although an experimental approach can reveal this phenomenon, another method is required to reveal the underlying theory behind the experimental results. The finite element method (FEM) is a powerful tool for evaluating experimental measurements and is useful for studying the bending asymmetry of insect wings. Therefore, in this study, the asymmetric bending of the Allomyrina dichotoma beetle's hind wing was investigated through FEM analyses rather than through an experimental approach. The results demonstrated that both the stressed stiffening of the membrane and the camber of the wing affect the bending asymmetry of insect wings. In particular, the chordwise camber increased the rigidity of the wing when a load was applied to the ventral side, while the spanwise camber increased the rigidity of the wing when a load was applied to the dorsal side. These results provide an appropriate explanation of the mechanical behavior of cambered insect wings, including the bending asymmetry behavior, and suggest an appropriate approach for analyzing the structural behavior of insect wings.
    PLoS ONE 01/2013; 8(12):e80689. · 3.53 Impact Factor

Full-text (2 Sources)

Download
49 Downloads
Available from
May 31, 2014