Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI.

Department of Psychology, Southern Methodist University, Dallas, TX, USA.
Psychiatry Research (Impact Factor: 2.68). 08/2011; 194(1):64-72. DOI: 10.1016/j.pscychresns.2011.06.013
Source: PubMed

ABSTRACT Arterial spin labeling (ASL) perfusion MRI is a relatively novel technique that can allow for quantitative measurement of cerebral blood flow (CBF) by using magnetically labeled arterial blood water as an endogenous tracer. Available data on resting CBF in schizophrenia primarily come from invasive and expensive nuclear medicine techniques that are often limited to small samples and yield mixed results. The noninvasive nature of ASL offers promise for larger-scale studies. The utility of this approach was examined in 24 healthy controls and 30 patients with schizophrenia. Differences between groups in quantitative CBF were assessed, as were relationships between CBF and psychiatric symptoms. Group comparisons demonstrated greater CBF for controls in several regions including bilateral precuneus and middle frontal gyrus. Patients showed increased CBF in left putamen/superior corona radiata and right middle temporal gyrus. For patients, greater severity of negative symptoms was associated with reduced CBF in bilateral superior temporal gyrus, cingulate gyrus, and left middle frontal gyrus. Increased severity of positive symptoms was related to both higher CBF in cingulate gyrus and superior frontal gyrus and decreased CBF in precentral gyrus/middle frontal gyrus. These findings support the feasibility and utility of implementing ASL in schizophrenia research and expand upon previous results.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Schizophrenia is characterized by altered resting-state functional connectivity. Most previous studies have focused on changes in connectivity strengths; however, the alterations in connectivity density in schizophrenia remain largely unknown. Here, we aimed to investigate changes in resting-state functional connectivity density (rsFCD) in schizophrenia. Methods: A total of 95 schizophrenia patients and 93 sex- and age-matched healthy controls (HCs) underwent resting-state functional MRI examinations. The rsFCD, which reflects the total number of functional connections between a given brain voxel and all other voxels in the entire brain, was calculated for each voxel of each subject. Voxel-based comparisons were performed to identify brain regions with significant rsFCD differences between patients and controls (P < 0.05, corrected). Results: Compared with HCs, patients with schizophrenia showed significantly increased rsFCD in the bilateral striatum and hippocampus and significantly decreased rsFCD in the bilateral sensorimotor cortices and right occipital cortex. However, the rsFCD values of these brain regions were not correlated with antipsychotic dosage, illness duration, or clinical symptom severity. Conclusions: The striatal and hippocampal regions and parietal-occipital regions exhibited completely different changes in rsFCD in schizophrenia, which roughly correspond to dopamine activity in these regions in schizophrenia. These findings support the connectivity disorder hypothesis of schizophrenia and increase our understanding of the neural mechanisms of schizophrenia.
    Frontiers in Behavioral Neuroscience 11/2014; 8:404. · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although many antipsychotics can reasonably control positive symptoms in schizophrenia, patients' return to society is often hindered by negative symptoms and cognitive deficits. As an alternative to animal rodent models that are often not very predictive for the clinical situation, we developed a new computer-based mechanistic modeling approach. This Quantitative Systems Pharmacology approach combines preclinical basic neurophysiology of a biophysically realistic neuronal ventromedial cortical-ventral striatal network identified from human imaging studies that are associated with negative symptoms. Calibration of a few biological coupling parameters using a retrospective clinical database of 34 drug-dose combinations resulted in correlation coefficients greater than 0.60, while a robust quantitative prediction of a number of independent trials was observed. We then simulated the effect of glycine modulation on the anticipated clinical outcomes. The quantitative biochemistry of glycine interaction with the different NMDA-NR2 subunits, neurodevelopmental trajectory of the NMDA-NR2B in the human schizophrenia pathology, their specific localization on excitatory vs. inhibitory interneurons and the electrogenic nature of the glycine transporter resulted in an inverse U-shape dose-response with an optimum in the low micromolar glycine concentration. Quantitative systems pharmacology based computer modeling of complex humanized brain circuits is a powerful alternative approach to explain the non-monotonic dose-response observed in past clinical trial outcomes with sarcosine, D-cycloserine, glycine, or D-serine or with glycine transporter inhibitors. In general it can be helpful to better understand the human neurophysiology of negative symptoms, especially with targets that show non-monotonic dose-responses.
    Frontiers in Pharmacology 10/2014; 5:229.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Puberty is the defining biological process of adolescent development, yet its effects on fundamental properties of brain physiology such as cerebral blood flow (CBF) have never been investigated. Capitalizing on a sample of 922 youths ages 8-22 y imaged using arterial spin labeled MRI as part of the Philadelphia Neurodevelopmental Cohort, we studied normative developmental differences in cerebral perfusion in males and females, as well as specific associations between puberty and CBF. Males and females had conspicuously divergent nonlinear trajectories in CBF evolution with development as modeled by penalized splines. Seventeen brain regions, including hubs of the executive and default mode networks, showed a robust nonlinear age-by-sex interaction that surpassed Bonferroni correction. Notably, within these regions the decline in CBF was similar between males and females in early puberty and only diverged in midpuberty, with CBF actually increasing in females. Taken together, these results delineate sex-specific growth curves for CBF during youth and for the first time to our knowledge link such differential patterns of development to the effects of puberty.
    Proceedings of the National Academy of Sciences 05/2014; · 9.81 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014