The cDNA-derived Investigational Human Parainfluenza Virus Type 3 Vaccine rcp45 Is Well Tolerated, Infectious, and Immunogenic in Infants and Young Children

Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
The Pediatric Infectious Disease Journal (Impact Factor: 3.14). 08/2011; 30(10):e186-91. DOI: 10.1097/INF.0b013e31822ea24f
Source: PubMed

ABSTRACT Human parainfluenza virus type 3 (HPIV3) is an important yet underappreciated cause of lower respiratory tract illness in children, and a licensed vaccine is not yet available.
A live-attenuated investigational HPIV3 vaccine virus designated rcp45 was derived from cDNA by using reverse genetics. rcp45 is genetically similar to the biologically derived cp45 vaccine virus and contains all of the known attenuating mutations of cp45, but has the advantage of a short, well-characterized passage history. We evaluated the tolerability, infectivity, and immunogenicity of 2 intranasal doses of rcp45 administered 4 to 10 weeks apart in a placebo-controlled, double-blind trial. A total of 45 infants and children between 6 and 36 months of age participated in this study. Tolerability and antibody responses to vaccine or placebo were assessed in all recipients. Infectivity was assessed by quantitation of vaccine virus shedding in a subset of vaccinated children.
rcp45 was well tolerated and highly infectious in HPIV3-seronegative children. A second dose of vaccine administered 4 to 10 weeks after the first dose was restricted in replication and did not boost serum antibody responses. The stability of 9 cp45 mutations, including the 6 major attenuating mutations, was examined and confirmed for viral isolates from 10 children.
The level of attenuation and immunogenicity of cDNA-derived rcp45 is comparable to what was previously observed with the biologically derived cp45 vaccine, and preliminary data suggest that the attenuating mutations in this vaccine virus are genetically stable. Continued clinical development of rcp45 is warranted.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human parainfluenza virus type 3 (HPIV3) is an important cause of lower respiratory tract illness in children, yet a licensed vaccine or antiviral drug is not available. We evaluated the safety, tolerability, infectivity, and immunogenicity of two intranasal, live-attenuated HPIV3 vaccines, designated rHPIV3-N(B) and rB/HPIV3, that were cDNA-derived chimeras of HPIV3 and bovine PIV3 (BPIV3). These were evaluated in adults, HPIV3 seropositive children, and HPIV3 seronegative children. A total of 112 subjects participated in these studies. Both rB/HPIV3 and rHPIV3-N(B) were highly restricted in replication in adults and seropositive children but readily infected seronegative children, who shed mean peak virus titers of 10(2.8) vs. 10(3.7)pfu/mL, respectively. Although rB/HPIV3 was more restricted in replication in seronegative children than rHPIV3-N(B), it induced significantly higher titers of hemagglutination inhibition (HAI) antibodies against HPIV3. Taken together, these data suggest that the rB/HPIV3 vaccine is the preferred candidate for further clinical development.
    Vaccine 12/2011; 30(26):3975-81. DOI:10.1016/j.vaccine.2011.12.022 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human parainfluenza viruses (HPIVs) are a common cause of acute respiratory illness throughout life. Infants, children, and the immunocompromised are the most likely to develop severe disease. HPIV1 and HPIV2 are best known to cause croup while HPIV3 is a common cause of bronchiolitis and pneumonia. HPIVs replicate productively in respiratory epithelial cells and do not spread systemically unless the host is severely immunocompromised. Molecular studies have delineated how HPIVs evade and block cellular innate immune responses to permit efficient replication, local spread, and host-to-host transmission. Studies using ex vivo human airway epithelium have focused on virus tropism, cellular pathology and the epithelial inflammatory response, elucidating how events early in infection shape the adaptive immune response and disease outcome.
    06/2012; 2(3):294-9. DOI:10.1016/j.coviro.2012.02.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human parainfluenza virus type 3 (HPIV3) is a common cause of upper and lower respiratory tract illness in infants and young children. Live-attenuated cold-adapted HPIV3 vaccines have been evaluated in infants but a suitable interval for administration of a second dose of vaccine has not been defined. HPIV3-seronegative children between the ages of 6 and 36 months were randomized 2:1 in a blinded study to receive two doses of 10(5) TCID50 (50% tissue culture infectious dose) of live-attenuated, recombinant cold-passaged human PIV3 vaccine (rHPIV3cp45) or placebo 6 months apart. Serum antibody levels were assessed prior to and approximately 4-6 weeks after each dose. Vaccine virus infectivity, defined as detection of vaccine-HPIV3 in nasal wash and/or a≥4-fold rise in serum antibody titer, and reactogenicity were assessed on days 3, 7, and 14 following immunization. Forty HPIV3-seronegative children (median age 13 months; range 6-35 months) were enrolled; 27 (68%) received vaccine and 13 (32%) received placebo. Infectivity was detected in 25 (96%) of 26 evaluable vaccinees following doses 1 and 9 of 26 subject (35%) following dose 2. Among those who shed virus, the median duration of viral shedding was 12 days (range 6-15 days) after dose 1 and 6 days (range 3-8 days) after dose 2, with a mean peak log10 viral titer of 3.4PFU/mL (SD: 1.0) after dose 1 compared to 1.5PFU/mL (SD: 0.92) after dose 2. Overall, reactogenicity was mild, with no difference in rates of fever and upper respiratory infection symptoms between vaccine and placebo groups. rHPIV3cp45 was immunogenic and well-tolerated in seronegative young children. A second dose administered 6 months after the initial dose was restricted in those previously infected with vaccine virus; however, the second dose boosted antibody responses and induced antibody responses in two previously uninfected children.
    Vaccine 10/2013; 31(48). DOI:10.1016/j.vaccine.2013.09.046 · 3.49 Impact Factor
Show more


Available from