Article

Effects of the Circadian Rhythm Gene Period 1 (Per1) on Psychosocial Stress-Induced Alcohol Drinking

Department of Psychiatry and Psychotherapy, Universität Regensburg, Ratisbon, Bavaria, Germany
American Journal of Psychiatry (Impact Factor: 13.56). 08/2011; 168(10):1090-8. DOI: 10.1176/appi.ajp.2011.10111579
Source: PubMed

ABSTRACT Circadian and stress-response systems mediate environmental changes that affect alcohol drinking. Psychosocial stress is an environmental risk factor for alcohol abuse. Circadian rhythm gene period 1 (Per1) is targeted by stress hormones and is transcriptionally activated in corticotropin releasing factor-expressing cells. The authors hypothesized that Per1 is involved in integrating stress response and circadian rhythmicity and explored its relevance to alcohol drinking.
In mice, the effects of stress on ethanol intake in mPer1-mutant and wild-type mice were assessed. In humans, single nucleotide polymorphisms (SNPs) in hPer1 were tested for association with alcohol drinking behavior in 273 adolescents and an adult case-control sample of 1,006 alcohol-dependent patients and 1,178 comparison subjects. In vitro experiments were conducted to measure genotype-specific expression and transcription factor binding to hPer1.
The mPer1-mutant mice showed enhanced alcohol consumption in response to social defeat stress relative to their wild-type littermates. An association with the frequency of heavy drinking in adolescents with the hPer1 promoter SNP rs3027172 and with psychosocial adversity was found. There was significant interaction between the rs3027172 genotype and psychosocial adversity on this drinking measure. In a confirmatory analysis, association of hPer1 rs3027172 with alcohol dependence was shown. Cortisol-induced transcriptional activation of hPer1 was reduced in human B-lymphoblastoid cells carrying the risk genotype of rs3027172. Binding affinity of the transcription factor Snail1 to the risk allele of the hPer1 SNP rs3027172 was also reduced.
The findings indicate that the hPer1 gene regulates alcohol drinking behavior during stressful conditions and provide evidence for underlying neurobiological mechanisms.

Download full-text

Full-text

Available from: Urs Albrecht, Jun 30, 2015
0 Followers
 · 
236 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian circadian system, which is comprised of multiple cellular clocks located in the organs and tissues, orchestrates their regulation in a hierarchical manner throughout the 24 hr of the day. At the top of the hierarchy are the suprachiasmatic nuclei, which synchronize subordinate organ and tissue clocks using electrical, endocrine, and metabolic signaling pathways that impact the molecular mechanisms of cellular clocks. The interplay between the central neural and peripheral tissue clocks is not fully understood and remains a major challenge in determining how neurological and metabolic homeostasis is achieved across the sleep-wake cycle. Disturbances in the communication between the plethora of body clocks can desynchronize the circadian system, which is believed to contribute to the development of diseases such as obesity and neuropsychiatric disorders. This review will highlight the relationship between clocks and metabolism, and describe how cues such as light, food, and reward mediate entrainment of the circadian system.
    Neuron 04/2012; 74(2):246-60. DOI:10.1016/j.neuron.2012.04.006 · 15.98 Impact Factor
  • American Journal of Psychiatry 10/2011; 168(10):1017-20. DOI:10.1176/appi.ajp.2011.11060928 · 13.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The body's internal system to control the daily rhythm of the body's functions (i.e., the circadian system), the body's stress response, and the body's neurobiology are highly interconnected. Thus, the rhythm of the circadian system impacts alcohol use patterns; at the same time, alcohol drinking also can alter circadian functions. The sensitivity of the circadian system to alcohol may result from alcohol's effects on the expression of several of the clock genes that regulate circadian function. The stress response system involves the hypothalamus and pituitary gland in the brain and the adrenal glands, as well as the hormones they secrete, including corticotrophin-releasing hormone, adrenocorticotrophic hormone, and glucocorticoids. It is controlled by brain-signaling molecules, including endogenous opioids such as β-endorphin. Alcohol consumption influences the activity of this system and vice versa. Finally, interactions exist between the circadian system, the hypothalamic-pituitary-adrenal axis, and alcohol consumption. Thus, it seems that certain clock genes may control functions of the stress response system and that these interactions are affected by alcohol.
    03/2012; 34(3):362-6.