Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration.

Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA.
Development (Impact Factor: 6.6). 09/2011; 138(17):3625-37. DOI: 10.1242/dev.064162
Source: PubMed

ABSTRACT Muscle regeneration requires the coordinated interaction of multiple cell types. Satellite cells have been implicated as the primary stem cell responsible for regenerating muscle, yet the necessity of these cells for regeneration has not been tested. Connective tissue fibroblasts also are likely to play a role in regeneration, as connective tissue fibrosis is a hallmark of regenerating muscle. However, the lack of molecular markers for these fibroblasts has precluded an investigation of their role. Using Tcf4, a newly identified fibroblast marker, and Pax7, a satellite cell marker, we found that after injury satellite cells and fibroblasts rapidly proliferate in close proximity to one another. To test the role of satellite cells and fibroblasts in muscle regeneration in vivo, we created Pax7(CreERT2) and Tcf4(CreERT2) mice and crossed these to R26R(DTA) mice to genetically ablate satellite cells and fibroblasts. Ablation of satellite cells resulted in a complete loss of regenerated muscle, as well as misregulation of fibroblasts and a dramatic increase in connective tissue. Ablation of fibroblasts altered the dynamics of satellite cells, leading to premature satellite cell differentiation, depletion of the early pool of satellite cells, and smaller regenerated myofibers. Thus, we provide direct, genetic evidence that satellite cells are required for muscle regeneration and also identify resident fibroblasts as a novel and vital component of the niche regulating satellite cell expansion during regeneration. Furthermore, we demonstrate that reciprocal interactions between fibroblasts and satellite cells contribute significantly to efficient, effective muscle regeneration.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tight regulation of cell proliferation and differentiation is required to ensure proper growth during development and post-natal life. The source and nature of signals regulating cell proliferation are not well identified in vivo. We investigated the specific pattern of proliferating cells in mouse limbs, using the Fluorescent ubiquitylation-based cell-cycle indicator (Fucci) system, which allowed the visualization of the G1, G1/S transition and S/G2/M phases of the cell cycle in red, yellow or green fluorescent colors, respectively. We also used the retroviral RCAS system to express a Fucci cassette in chick embryos. We performed a comprehensive analysis of the cell cycle state of myogenic cells in fetal limb muscles, adult myoblast primary cultures and isolated muscle fiber cultures using the Fucci transgenic mice. We found that myonuclei of terminally differentiated muscle fibers displayed Fucci red fluorescence during mouse and chick fetal development, in adult isolated muscle fiber (ex vivo) and adult myoblast (in vitro) mouse cultures. This indicated that myonuclei exited from the cell cycle in the G1 phase and are maintained in a blocked G1-like state. We also found that cycling muscle progenitors and myoblasts in G1 phase were not completely covered by the Fucci system. During mouse fetal myogenesis, Pax7+ cells labeled with the Fucci system were observed mostly in S/G2/M phases. Proliferating cells in S/G2/M phases displayed a specific pattern in mouse fetal limbs, delineating individualized muscles. In addition, we observed more Pax7+ cells in S/G2/M phases at muscle tips, compared to the middle of muscles. These results highlight a specific spatial regionalization of cycling cells at the muscle borders and muscle-tendon interface during fetal development.
    Developmental biology. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Across different niches, subsets of highly functional stem cells are maintained in a relatively dormant rather than proliferative state. Our understanding of proliferative dynamics in tissue-specific stem cells during conditions of increased tissue turnover remains limited. Using a TetO-H2B-GFP reporter of proliferative history, we identify skeletal muscle stem cell, or satellite cells, that retain (LRC) or lose (nonLRC) the H2B-GFP label. We show in mice that LRCs and nonLRCs are formed at birth and persist during postnatal growth and adult muscle repair. Functionally, LRCs and nonLRCs are born equivalent and transition during postnatal maturation into distinct and hierarchically organized subsets. Adult LRCs give rise to LRCs and nonLRCs; the former are able to self-renew, whereas the latter are restricted to differentiation. Expression analysis revealed the CIP/KIP family members p21(cip1) (Cdkn1a) and p27(kip1) (Cdkn1b) to be expressed at higher levels in LRCs. In accordance with a crucial role in LRC fate, loss of p27(kip1) promoted proliferation and differentiation of LRCs in vitro and impaired satellite cell self-renewal after muscle injury. By contrast, loss of p21(cip1) only affected nonLRCs, in which myogenic commitment was inhibited. Our results provide evidence that restriction of self-renewal potential to LRCs is established early in life and is maintained during increased tissue turnover through the cell cycle inhibitor p27(kip1). They also reveal the differential role of CIP/KIP family members at discrete steps within the stem cell hierarchy.
    Development 04/2014; 141(8):1649-59. · 6.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The twenty-five known matrix metalloproteases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteases (TIMPs), mediate cell invasion through the extracellular matrix (ECM). In a comparative 3D assay, we analyzed human and mouse satellite cells' competence to invade an artificial ECM (collagen I). We identified a single MMP that: 1) is expressed by human muscle satellite cells; 2) is induced at the mRNA/protein level by adhesion to collagen I; and 3) is necessary for invasion into a collagen I matrix. Interestingly, murine satellite cells neither express this MMP, nor invade the collagen matrix. However, exogenous human MMP-14 is not sufficient to induce invasion of a collagen matrix by murine cells, emphasizing species differences.
    American journal of physiology. Cell physiology. 06/2014;


Available from
Jun 1, 2014