Article

A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes.

Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
Human Molecular Genetics (Impact Factor: 6.68). 08/2011; 20(21):4132-42. DOI: 10.1093/hmg/ddr337
Source: PubMed

ABSTRACT The PTEN (phosphatase and tensin homolog) phosphatase is unique in mammals in terms of its tumor suppressor activity, exerted by dephosphorylation of the lipid second messenger PIP(3) (phosphatidylinositol 3,4,5-trisphosphate), which activates the phosphoinositide 3-kinase/Akt/mTOR (mammalian target of rapamycin) oncogenic pathway. Loss-of-function mutations in the PTEN gene are frequent in human cancer and in the germline of patients with PTEN hamartoma tumor-related syndromes (PHTSs). In addition, PTEN is mutated in patients with autism spectrum disorders (ASDs), although no functional information on these mutations is available. Here, we report a comprehensive in vivo functional analysis of human PTEN using a heterologous yeast reconstitution system. Ala-scanning mutagenesis at the catalytic loops of PTEN outlined the critical role of residues within the P-catalytic loop for PIP(3) phosphatase activity in vivo. PTEN mutations that mimic the P-catalytic loop of mammalian PTEN-like proteins (TPTE, TPIP, tensins and auxilins) affected PTEN function variably, whereas tumor- or PHTS-associated mutations targeting the PTEN P-loop produced complete loss of function. Conversely, Ala-substitutions, as well as tumor-related mutations at the WPD- and TI-catalytic loops, displayed partial activity in many cases. Interestingly, a tumor-related D92N mutation was partially active, supporting the notion that the PTEN Asp92 residue might not function as the catalytic general acid. The analysis of a panel of ASD-associated hereditary PTEN mutations revealed that most of them did not substantially abrogate PTEN activity in vivo, whereas most of PHTS-associated mutations did. Our findings reveal distinctive functional patterns among PTEN mutations found in tumors and in the germline of PHTS and ASD patients, which could be relevant for therapy.

0 Bookmarks
 · 
202 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Food and Drug Administration (FDA) has approved two mechanism-based treatments for tuberous sclerosis complex (TSC)-everolimus and vigabatrin. However, these treatments have not been systematically studied in individuals with TSC and severe autism. The aim of this review is to identify the clinical features of severe autism in TSC, applicable preclinical models, and potential barriers that may warrant strategic planning in the design phase of clinical trial development. A comprehensive search strategy was formed and searched across PubMed, Embase and SCOPUS from their inception to 2/21/12, 3/16/12, and 3/12/12 respectively. After the final search date, relevant, updated articles were selected from PubMed abstracts generated electronically and emailed daily from PubMed. The references of selected articles were searched, and relevant articles were selected. A search of clinicaltrials.gov was completed using the search term "TSC" and "tuberous sclerosis complex". Autism has been reported in as many as 60% of individuals with TSC; however, review of the literature revealed few data to support clear classification of the severity of autism in TSC. Variability was identified in the diagnostic approach, assessment of cognition, and functional outcome among the reviewed studies and case reports. Objective outcome measures were not used in many early studies; however, diffusion tensor imaging of white matter, neurophysiologic variability in infantile spasms, and cortical tuber subcategories were examined in recent studies and may be useful for objective classification of TSC in future studies. Mechanism-based treatments for TSC are currently available. However, this literature review revealed two potential barriers to successful design and implementation of clinical trials in individuals with severe autism-an unclear definition of the population and lack of validated outcome measures. Recent studies of objective outcome measures in TSC and further study of applicable preclinical models present an opportunity to overcome these barriers.
    World journal of clinical pediatrics. 08/2013; 2(3):16-25.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies attempting to identify and understand the function of mutated genes and deregulated molecular pathways in cancer have been ongoing for many years. The PI3K-PTEN-mTOR signaling pathway is one of the most frequently deregulated pathways in cancer. PIK3CA mutations are found 11%-33% of head and neck cancer (HNC). The hotspot mutation sites for PIK3CA are E542K, E545K and H1047R/L. The PTEN somatic mutations are in 9-23% of HNC, and they frequently cluster in the phosphatase domain of PTEN protein. PTEN loss of heterozygosity (LOH) ranges from 41%-71% and loss of PTEN protein expression occurs in 31.2% of the HNC samples. PIK3CA and PTEN are key molecules in the PI3K-PTEN-mTOR signaling pathway. In this review, we provided a comprehensive overview of mutations in the PI3K-PTEN-mTOR molecular circuitry in HNC, including PI3K family members, TSC1/TSC2, PTEN, AKT, and mTORC1 and mTORC2 complexes. We discussed how these genetic alterations may affect protein structure and function. We also highlight the latest discoveries in protein kinase and tumor suppressor families, emphasizing how mutations in these families interfere with PI3K signaling. A better understanding of the mechanisms underlying cancer formation, progression and resistance to therapy will inform selection of novel genomic-based personalized therapies for head and neck cancer patients.
    Journal of carcinogenesis & mutagenesis. 08/2013; Suppl 5.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line of patients with tumor predisposition or with neurological or cognitive disorders, which makes the PTEN gene and protein a major focus of interest in current biomedical research. After almost two decades of intense investigation on the 403-residue-long PTEN protein, a previously uncharacterized form of PTEN has been discovered that contains 173 amino-terminal extra amino acids, as a result of an alternate translation initiation site. To facilitate research in the field and to avoid ambiguities in the naming and identification of PTEN amino acids from publications and databases, we propose here a unifying nomenclature and amino acid numbering for this longer form of PTEN.
    Science Signaling 07/2014; 7(332):pe15. · 7.65 Impact Factor

Full-text

Download
60 Downloads
Available from
May 31, 2014