Article

Towards a glutamate hypothesis of depression An emerging frontier of neuropsychopharmacology for mood disorders

Department of Psychiatry, Clinical Neuroscience Research Unit, Yale University School of Medicine, New Haven, CT, USA.
Neuropharmacology (Impact Factor: 4.82). 08/2011; 62(1):63-77. DOI: 10.1016/j.neuropharm.2011.07.036
Source: PubMed

ABSTRACT Half a century after the first formulation of the monoamine hypothesis, compelling evidence implies that long-term changes in an array of brain areas and circuits mediating complex cognitive-emotional behaviors represent the biological underpinnings of mood/anxiety disorders. A large number of clinical studies suggest that pathophysiology is associated with dysfunction of the predominant glutamatergic system, malfunction in the mechanisms regulating clearance and metabolism of glutamate, and cytoarchitectural/morphological maladaptive changes in a number of brain areas mediating cognitive-emotional behaviors. Concurrently, a wealth of data from animal models have shown that different types of environmental stress enhance glutamate release/transmission in limbic/cortical areas and exert powerful structural effects, inducing dendritic remodeling, reduction of synapses and possibly volumetric reductions resembling those observed in depressed patients. Because a vast majority of neurons and synapses in these areas and circuits use glutamate as neurotransmitter, it would be limiting to maintain that glutamate is in some way 'involved' in mood/anxiety disorders; rather it should be recognized that the glutamatergic system is a primary mediator of psychiatric pathology and, potentially, also a final common pathway for the therapeutic action of antidepressant agents. A paradigm shift from a monoamine hypothesis of depression to a neuroplasticity hypothesis focused on glutamate may represent a substantial advancement in the working hypothesis that drives research for new drugs and therapies. Importantly, despite the availability of multiple classes of drugs with monoamine-based mechanisms of action, there remains a large percentage of patients who fail to achieve a sustained remission of depressive symptoms. The unmet need for improved pharmacotherapies for treatment-resistant depression means there is a large space for the development of new compounds with novel mechanisms of action such as glutamate transmission and related pathways. This article is part of a Special Issue entitled 'Anxiety and Depression'.

0 Followers
 · 
237 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-Aminocyclopropanecarboxylic acid all of which target this system have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression. Copyright © 2015. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 03/2015; DOI:10.1016/j.pnpbp.2015.02.015 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolomics was applied to a C57BL/6N mouse model of chronic unpredictable mild stress (CMS). Such mice were treated with two antidepressants from different categories: fluoxetine and imipramine. Metabolic profiling of the hippocampus was performed using gas chromatography-mass spectrometry analysis on samples prepared under optimized conditions, followed by principal component analysis, partial least squares-discriminant analysis, and pair-wise orthogonal projections to latent structures discriminant analyses. Body weight measurement and behavior tests including an open field test and the forced swimming test were completed with the mice as a measure of the phenotypes of depression and antidepressive effects. As a result, 23 metabolites that had been differentially expressed among the control, CMS, and antidepressant-treated groups demonstrated that amino acid metabolism, energy metabolism, adenosine receptors, and neurotransmitters are commonly perturbed by drug treatment. Potential predictive markers for treatment effect were identified: myo-inositol for fluoxetine and lysine and oleic acid for imipramine. Collectively, the current study provides insights into the molecular mechanisms of the antidepressant effects of two widely used medications.
    Scientific Reports 03/2015; 5:8890. DOI:10.1038/srep08890 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depression (MD) is a highly heterogeneous diagnostic category. Diverse symptoms such as sad mood, anhedonia, and fatigue are routinely added to an unweighted sum-score, and cutoffs are used to distinguish between depressed participants and healthy controls. Researchers then investigate outcome variables like MD risk factors, biomarkers, and treatment response in such samples. These practices presuppose that (1) depression is a discrete condition, and that (2) symptoms are interchangeable indicators of this latent disorder. Here I review these two assumptions, elucidate their historical roots, show how deeply engrained they are in psychological and psychiatric research, and document that they contrast with evidence. Depression is not a consistent syndrome with clearly demarcated boundaries, and depression symptoms are not interchangeable indicators of an underlying disorder. Current research practices lump individuals with very different problems into one category, which has contributed to the remarkably slow progress in key research domains such as the development of efficacious antidepressants or the identification of biomarkers for depression. The recently proposed network framework offers an alternative to the problematic assumptions. MD is not understood as a distinct condition, but as heterogeneous symptom cluster that substantially overlaps with other syndromes such as anxiety disorders. MD is not framed as an underlying disease with a number of equivalent indicators, but as a network of symptoms that have direct causal influence on each other: insomnia can cause fatigue which then triggers concentration and psychomotor problems. This approach offers new opportunities for constructing an empirically based classification system and has broad implications for future research.
    Frontiers in Psychology 03/2015; 6(306):1-11. DOI:10.3389/fpsyg.2015.00309 · 2.80 Impact Factor

Full-text (2 Sources)

Download
98 Downloads
Available from
May 27, 2014