Abnormal anthropometric measurements and growth pattern in male adolescent idiopathic scoliosis.

Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China.
European Spine Journal (Impact Factor: 2.47). 08/2011; 21(1):77-83. DOI: 10.1007/s00586-011-1960-x
Source: PubMed

ABSTRACT The progression of adolescent idiopathic scoliosis is closely correlated with longitudinal growth during puberty. A decreased incidence of curve progression has been found in male patients with adolescent idiopathic scoliosis compared with female patients with the condition. This finding implies that there might be a sexual dimorphism in the pubertal growth patterns of adolescent idiopathic scoliosis patients. Abnormal pubertal growth in female adolescent idiopathic scoliosis patients has been well characterized; however, the pubertal growth patterns of male adolescent idiopathic scoliosis patients have not been reported. We conducted a cross-sectional study of anthropometric measurements to compare the growth patterns of male patients with adolescent idiopathic scoliosis with those of healthy boys during puberty and explore the difference in the pubertal growth patterns of female and male patients with adolescent idiopathic scoliosis.
A total of 688 subjects were involved in the study, including 332 male adolescent idiopathic scoliosis patients and 356 age-matched healthy boys. The subjects were categorized according to their chronological ages. Their body weights, heights and arm spans were obtained using standard methods; the corrected body heights of the adolescent idiopathic scoliosis boys were determined using Bjour's equation. The inter-group differences in the anthropometric parameters were analyzed. Multivariate regression analysis was carried out in the adolescent idiopathic scoliosis patients to identify the anthropometric parameters that influence curve severity.
The corrected standing heights and arm spans of male adolescent idiopathic scoliosis patients were similar to those of the matched controls during puberty. However, the body weights of the adolescent idiopathic scoliosis patients who were more than 14 years old were significantly less than those of the control group. The body mass index of the adolescent idiopathic scoliosis patients between the ages of 15 and 17 were also significantly less than those of the control subjects. Moreover, a significantly higher incidence of underweight was found in adolescent idiopathic scoliosis patients (8.6%) than in the controls (3.4%). Upon multivariate regression analysis, body weight and chronological age were identified as independent predictors of curve magnitude in male adolescent idiopathic scoliosis patients. The male adolescent idiopathic scoliosis patients with variable curve patterns exhibited no significant differences in their anthropometric parameters.
The results showed abnormal pubertal growth in the male adolescent idiopathic scoliosis patients compared with their age- and gender-matched normal controls. Despite similar longitudinal growth, the male patients with adolescent idiopathic scoliosis exhibited significantly lower body weights and a higher incidence of underweight during the later stage of puberty compared with their normal controls. These abnormalities in the pubertal growth of male patients were different from those observed in female patients with adolescent idiopathic scoliosis. Body weight could be an important parameter for further longitudinal studies on the prognostication of curve progression in adolescent idiopathic scoliosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Knowledge on the normative growth of the spine is critical in the prenatal detection of its abnormalities. We aimed to study the size of T6 vertebra in human fetuses with the crown-rump length of 115-265 mm. MATERIALS AND METHODS: Using the methods of computed tomography (Biograph mCT), digital image analysis (Osirix 3.9) and statistics, the normative growth of the T6 vertebral body and the three ossification centers of T6 vertebra in 55 spontaneously aborted human fetuses (27 males, 28 females) aged 17-30 weeks were studied. RESULTS: Neither male-female nor right-left significant differences were found. The height, transverse, and sagittal diameters of the T6 vertebral body followed natural logarithmic functions as y = -4.972 + 2.732 × ln(age) ± 0.253 (R (2) = 0.72), y = -14.862 + 6.426 × ln(age) ± 0.456 (R (2) = 0.82), and y = -10.990 + 4.982 × ln(age) ± 0.278 (R (2) = 0.89), respectively. Its cross-sectional area (CSA) rose proportionately as y = -19.909 + 1.664 × age ± 2.033 (R (2) = 0.89), whereas its volumetric growth followed the four-degree polynomial function y = 19.158 + 0.0002 × age(4) ± 7.942 (R (2) = 0.93). The T6 body ossification center grew logarithmically in both transverse and sagittal diameters as y = -14.784 + 6.115 × ln(age) ± 0.458 (R (2) = 0.81) and y = -12.065 + 5.019 × ln(age) ± 0.315 (R (2) = 0.87), and proportionately in both CSA and volume like y = -15.591 + 1.200 × age ± 1.470 (R (2) = 0.90) and y = -22.120 + 1.663 × age ± 1.869 (R (2) = 0.91), respectively. The ossification center-to-vertebral body volume ratio was gradually decreasing with age. On the right and left, the neural ossification centers revealed the following models: y = -15.188 + 6.332 × ln(age) ± 0.629 (R (2) = 0.72) and y = -15.991 + 6.600 × ln(age) ± 0.629 (R (2) = 0.74) for length, y = -6.716 + 2.814 × ln(age) ± 0.362 (R (2) = 0.61) and y = -7.058 + 2.976 × ln(age) ± 0.323 (R (2) = 0.67) for width, y = -5.665 + 0.591 × age ± 1.251 (R (2) = 0.86) and y = -11.281 + 0.853 × age ± 1.653 (R (2) = 0.78) for CSA, and y = -9.279 + 0.849 × age ± 2.302 (R (2) = 0.65) and y = -16.117 + 1.155 × age ± 1.832 (R (2) = 0.84) for volume, respectively. CONCLUSIONS: Neither sex nor laterality differences are found in the morphometric parameters of evolving T6 vertebra and its three ossification centers. The growth dynamics of the T6 vertebral body follow logarithmically for its height, and both sagittal and transverse diameters, linearly for its CSA, and four-degree polynomially for its volume. The three ossification centers of T6 vertebra increase logarithmically in both transverse and sagittal diameters, and linearly in both CSA and volume. The age-specific reference intervals for evolving T6 vertebra present the normative values of potential relevance in the diagnosis of congenital spinal defects.
    Anatomia Clinica 03/2013; · 0.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: STUDY DESIGN: A controlled prospective cross-sectional case study. OBJECTIVE: To investigate body mass index (BMI) and corporal composition in girls with adolescent idiopathic scoliosis (AIS) and compare them with a normal population matched by sex and age. There is controversy as to whether there are real anthropometric alterations in patients with AIS. Relative to the weight or the BMI, some studies find differences and other studies do not detect them. AIS and anorexia nervosa (AN) make their debut during adolescence and both may be associated with an alteration of their subjective physical perception. Some authors propose a link between AIS and AN supported both by an alteration of physical perception and lower BMI. No studies on body composition in AIS have been published. METHODS: Adolescent idiopathic scoliosis patient surgery candidates during 2008 were studied. Body composition was evaluated using the bioelectrical impedance analysis (Bodystat, Isle of Man, UK). A study population of more than 5,000 patients that was published by Kyle et al. (Nutrition 17:534-541, 2001) was chosen as a control (group 1). Another control group (group 2) of healthy volunteers matched by sex and age was selected among a school age and university population in Barcelona, Spain. A variance analysis was used to analyze differences between the mean values of the control group 1, the European control group, and the AIS patient surgery candidates (Epiinfo 6.2001). Comparisons between the AIS patients and control group 2 were performed with the T Student test of unpaired samples using the SPSS 15.0 (Statistical Package Social Science) software. RESULTS: Twenty-seven women with a mean age of 17.4 years. BMI was 18.9 kg/m(2) (SD 1.7; 95 % CI 18.31-19.73). In the variance analysis, a significant difference between AIS and group 1 in BMI was observed (21.0 vs. 18.9, p = 0.000004); fat-free mass (FFM = 42.6 vs. 38.9, p = 0.0000009) and fat mass (FM = 15.6 vs. 13.7, p = 0.03). Significant differences in BMI (22.13 vs. 18.9, p = 0.001; 95 % CI difference 1.85-4.60), fat mass index (FMi = 7.17 vs. 4.97, p = 0.000; 95 % CI difference 1.36-3.05) and fat-free mass index (FFMi = 14.95 vs. 13.09, p = 0.001; 95 % CI difference 0.26-1.86) between AIS and group 2 were also seen. CONCLUSION: The conclusion is that there is a real alteration of body composition in AIS. The BMI, FFMi and FMi are lower than in the general population in the series under study.
    European Spine Journal 08/2012; · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several previous studies have evaluated the association between rs1149048 polymorphism in the matrilin-1 gene (MATN1) and the risk of adolescent idiopathic scoliosis (AIS). However the results of those studies were inconsistent. We conducted this meta-analysis to assess whether rs1149048 polymorphism was involved in the risk of AIS and evaluated the associations in different ethnicities. Electronic databases, such as: PubMed, EMBASE, WANFANG databases in any languages up to Dec 2012 were searched to assess the association between rs1149048 polymorphism and AIS. Meta-analysis was performed by STATA 12.0 software to estimate the pooled odds ratio (OR) and the 95 % confidence interval (CI). Finally four papers including five studies which involved 1436 AIS patients and 1,879 controls were identified for this meta-analysis. The results showed that G allele of the rs1149048 was significantly associated with increased AIS risk [OR = 1.13, 95 % CI (1.02-1.25), P = 0.023]. As for genotype (GG vs. GA + AA), homozygous GG genotype was also found to be a risk factor of developing AIS. The subgroup meta-analysis results showed G allele and GG genotype were significantly associated with AIS in Asian group but not in Caucasian group. Neither Egger's test nor Begg's test found evidence of publication bias in current study (P > 0.05). In summary, this meta-analysis found an overall significant association of rs1149048 polymorphism with risk of AIS, especially in Asian population. The relationship between rs1149048 polymorphism and AIS in other ethnic population is needed to be investigated.
    Molecular Biology Reports 01/2014; · 2.51 Impact Factor


Available from