Adenylyl cyclase/cAMP-PKA-mediated phosphorylation of basal L-type Ca(2+) channels in mouse embryonic ventricular myocytes.

Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Cell calcium (Impact Factor: 4.29). 08/2011; 50(5):433-43. DOI: 10.1016/j.ceca.2011.07.004
Source: PubMed

ABSTRACT In fetal mammalian heart, constitutive adenylyl cyclase/cyclic AMP-dependent protein kinase A (cAMP-PKA)-mediated phosphorylation, independent of β-adrenergic receptor stimulation, could under such circumstances play an important role in sustaining the L-type calcium channel current (I(Ca,L)) and regulating other PKA dependent phosphorylation targets. In this study, we investigated the regulation of L-type Ca(2+) channel (LTCC) in murine embryonic ventricles. The data indicated a higher phosphorylation state of LTCC at early developmental stage (EDS, E9.5-E11.5) than late developmental stage (LDS, E16.5-E18.5). An intrinsic adenylyl cyclase (AC) activity, PKA activity and basal cAMP concentration were obviously higher at EDS than LDS. The cAMP increase in the presence of isobutylmethylxanthine (IBMX, nonselective phosphodiesterase inhibitor) was further augmented at LDS but not at EDS by chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester (BAPTA-AM). Furthermore, I(Ca,L) increased with time after patch rupture in LDS cardiomyocytes dialyzed with pipette solution containing BAPTA whereas not at EDS. Thus we conclude that the high basal level of LTCC phosphorylation is due to the high intrinsic PKA activity and the high intrinsic AC activity at EDS. The latter is possibly owing to the little or no effect of Ca(2+) influx via LTCCs on AC activity, leading to the inability to inhibit AC.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although Cav1.2 Ca(2+) channels are modulated by reactive oxygen species (ROS), the underlying mechanisms are not fully understood. In this study, we investigated effects of hydrogen peroxide (H2O2) on the Ca(2+) channel using a patch-clamp technique in guinea pig ventricular myocytes. Externally applied H2O2 (1 mM) increased Ca(2+) channel activity in the cell-attached mode. A specific inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) KN-93 (10 μM) partially attenuated the H2O2-mediated facilitation of the channel, suggesting both CaMKII-dependent and -independent pathways. However, in the inside-out mode, 1 mM H2O2 increased channel activity in a KN-93-resistant manner. Since H2O2-pretreated calmodulin did not reproduce the H2O2 effect, the target of H2O2 was presumably assigned to the Ca(2+) channel itself. A thiol-specific oxidizing agent mimicked and occluded the H2O2 effect. These results suggest that H2O2 facilitates the Ca(2+) channel through oxidation of cysteine residue(s) in the channel as well as the CaMKII-dependent pathway.
    The Journal of Physiological Sciences 07/2013; · 1.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study used the selective protein kinase A (PKA) inhibitor H-89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide) to determine the role of basal PKA activity in modulating cardiac excitation-contraction coupling in the absence of β-adrenergic stimulation. Basal intracellular cyclic AMP (cAMP) levels measured in isolated murine ventricular myocytes with an enzyme immunoassay were increased upon adenylyl cyclase activation (forskolin; 1 and 10 μM) or phosphodiesterase inhibition (3-isobutyl-1-methylxanthine, IBMX; 300 μM). Forskolin and IBMX also caused concentration-dependent increases in peak Ca(2+) transients (fura-2) and cell shortening (edge-detector) measured simultaneously in field-stimulated myocytes (37 °C). Similar effects were seen upon application of dibutyryl cAMP. In voltage-clamped myocytes, H-89 (2 μM) decreased basal Ca(2+) transients, contractions and underlying Ca(2+) currents. H-89 also decreased diastolic Ca(2+) and the gain of excitation-contraction coupling (Ca(2+) release/Ca(2+) current), especially at negative membrane potentials. This was independent of alterations in sarcoplasmic reticulum (SR) Ca(2+) loading, as SR stores were unchanged by PKA inhibition. H-89 also decreased the frequency, amplitude and width of spontaneous Ca(2+) sparks measured in quiescent myocytes (loaded with fluo-4), but increased time-to-peak. Thus, H-89 suppressed SR Ca(2+) release by decreasing Ca(2+) current and by reducing the gain of excitation-contraction coupling, in part by decreasing the size of individual Ca(2+) release units. These data suggest that basal PKA activity enhances SR Ca(2+) release in the absence of ß-adrenergic stimulation. This may depress contractile function in models such as aging, where the cAMP/PKA pathway is altered due to low basal cAMP levels.
    European journal of pharmacology 07/2012; 691(1-3):163-72. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac ryanodine receptor (RyR2) is a homotetramer of 560 kDa polypeptides that is regulated by calmodulin (CaM) which decreases its open probability at diastolic and systolic Ca(2+) concentrations. Point mutations in the CaM-binding domain of RyR2 (W3587A/L3591D/F3603A, RyR2ADA) in mice result in severe cardiac hypertrophy, poor left ventricle contraction and death by postnatal day 16, suggesting that CaM-inhibition of RyR2 is required for normal cardiac function. Here, we report on Ca(2+) signaling properties of enzymatically isolated, Fluo-4 dialyzed whole cell clamped cardiac myocytes from 10-15 day old wild type (WT) and homozygous RyR2ADA/ADA mice. Spontaneously occurring Ca(2+) spark frequency, measured at -80mV, was 14-fold lower in mutant compared to WT myocytes. ICa, though significantly smaller in mutant myocytes, triggered Ca(2+) transients that were of comparable size to those of WT myocytes, but with slower activation and decay kinetics. Caffeine-triggered Ca(2+) transients were about 3 times larger in mutant myocytes, generating 3-4 fold bigger Na+-Ca(2+) exchanger NCX currents (INCX). Mutant myocytes often exhibited Ca(2+)-transients of variable size and duration that were accompanied by similarly alternating and slowly activating INCX. The data suggest that RyR2ADA mutation produces significant reduction in ICa density and CICR gain, longer but infrequently occurring Ca(2+)-sparks, larger SR Ca(2+) loads, and spontaneous Ca(2+) releases accompanied by activation of large and potentially arrhythmogenic inward INCX.
    The Journal of Physiology 07/2013; · 4.38 Impact Factor