Rapid isolation of Arabidopsis chloroplasts and their use for in vitro protein import assays.

Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2011; 774:281-305. DOI: 10.1007/978-1-61779-234-2_17
Source: PubMed

ABSTRACT In vitro chloroplast protein import assays have been performed since the late 1970s, initially with plant species (e.g., pea and spinach) that readily provide an abundant source of starting material and also, subsequently, a good yield of chloroplasts for import assays. However, the sequencing of the Arabidopsis genome paved the way for an additional model system that is more amenable to genetic analysis, as a complement to the more biochemically orientated models such as pea and spinach. A prerequisite for this change was an efficient and reliable protocol for the isolation of chloroplasts for use in protein import assays, enabling biochemical approaches to be combined with the genetic potential of the plant. The method described here was developed as a rapid and low-cost procedure that can be accessed by everyone due to its simplicity. Despite its rapidity and simplicity, the method yields highly pure chloroplasts, and in addition works well with mutant plants that exhibit pale or chlorotic phenotypes. The protocol is also optimized for work with material from young plants (10-14 days old), when protein import is believed to be at its peak, and so plant growth can be conducted in vitro on Murashige and Skoog medium. The isolation method has been used not only for protein import assays, but also for proteomic analysis and further subfractionation studies.

Download full-text


Available from: Henrik Aronsson, Mar 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced levels of singlet oxygen ((1)O(2)) in chloroplasts trigger programmed cell death. The impact of (1)O(2) production in chloroplasts was monitored first in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that accumulates (1)O(2) upon a dark/light shift. The onset of (1)O(2) production is rapidly followed by a loss of chloroplast integrity that precedes the rupture of the central vacuole and the final collapse of the cell. Inactivation of the two plastid proteins EXECUTER (EX1) and EX2 in the flu mutant abrogates these responses, indicating that disintegration of chloroplasts is due to EX-dependent signaling rather than (1)O(2) directly. In flu seedlings, (1)O(2)-mediated cell death signaling operates as a default pathway that results in seedlings committing suicide. By contrast, EX-dependent signaling in the wild type induces the formation of microlesions without decreasing the viability of seedlings. (1)O(2)-mediated and EX-dependent loss of plastid integrity and cell death in these plants occurs only in cells containing fully developed chloroplasts. Our findings support an as yet unreported signaling role of (1)O(2) in the wild type exposed to mild light stress that invokes photoinhibition of photosystem II without causing photooxidative damage of the plant.
    The Plant Cell 07/2012; 24(7):3026-39. DOI:10.1105/tpc.112.100479 · 9.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of chloroplasts and other plastids depends on the import of thousands of nucleus-encoded proteins from the cytosol. Import is initiated by TOC (translocon at the outer envelope of chloroplasts) complexes in the plastid outer membrane that incorporate multiple, client-specific receptors. Modulation of import is thought to control the plastid's proteome, developmental fate, and functions. Using forward genetics, we identified Arabidopsis SP1, which encodes a RING-type ubiquitin E3 ligase of the chloroplast outer membrane. The SP1 protein associated with TOC complexes and mediated ubiquitination of TOC components, promoting their degradation. Mutant sp1 plants performed developmental transitions that involve plastid proteome changes inefficiently, indicating a requirement for reorganization of the TOC machinery. Thus, the ubiquitin-proteasome system acts on plastids to control their development.
    Science 11/2012; 338(6107):655-9. DOI:10.1126/science.1225053 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously.
    Frontiers in Plant Science 12/2012; 3:283. DOI:10.3389/fpls.2012.00283 · 3.64 Impact Factor