Loss of ΔNp63α promotes mitotic exit in epithelial cells.

Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
FEBS letters (Impact Factor: 3.54). 08/2011; 585(17):2720-6. DOI: 10.1016/j.febslet.2011.07.030
Source: PubMed

ABSTRACT Protein p63 is a key regulator in cell proliferation and cell differentiation in stratified squamous epithelium. ΔNp63α is the most commonly expressed p63 isoform, which is often overexpressed in human tumor. In the present work we report the potential involvement of ΔNp63α in cell cycle regulation. ΔNp63α accumulated in mitotic cells but its expression decreased during mitotic exit. Moreover, ΔNp63α knockdown promoted mitotic exit. ΔNp63α shares a conserved destruction box (D-box) motif with other potential targets of the Anaphase-Promoting Complex/Cyclosome (APC/C). Overexpression of APC/C coactivator Cdh1 destabilized ΔNp63α. Our results suggest that ΔNp63α level is cell cycle-regulated and may play a role in the regulation of mitotic exit.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of perceptual expertise typically ask whether the mechanisms underlying face recognition are domain specific or domain general. This debate has so dominated the literature that it has masked the more general usefulness of the expertise framework for studying the phenomenon of category specialization. Here we argue that the value of an expertise framework is not solely dependent on its relevance to face recognition. Beyond offering an alternative to domain-specific accounts of face specialization in terms of interactions between experience, task demands, and neural biases, expertise studies reveal principles of perceptual learning that apply to many different domains and forms of expertise. As such the expertise framework provides a unique window onto the functional plasticity of the mind and brain.
    Trends in Cognitive Sciences 05/2006; 10(4):159-66. · 16.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We used a colour Mondrian--an abstract scene with no recognizable objects--and its achromatic version to image the change in blood oxygenation in the brains of 12 human subjects, with the aim of learning more about the position and variability of the colour centre in the human brain. The results showed a consistent association of colour stimulation with activation of an area that is distinct from the primary visual areas, and lies in the ventral occipitotemporal cortex; we refer to it as human V4. The position of human V4, as defined on functional grounds, varies between individuals in absolute terms but is invariably found on the lateral aspect of the collateral sulcus on the fusiform gyrus. There was no indication of lingual gyral activation. In further studies designed to reveal the topographic map within V4, we stimulated the superior and inferior visual fields separately, using the same stimuli. We found that human V4 contains a representation of both the superior and inferior visual fields. In addition, there appears to be retinotopic organization of V4 with the superior visual field being represented more medially on the fusiform gyrus and the inferior field more laterally, the two areas abutting on one another. We find no evidence that suggests the existence of a separate representation of the inferior hemifield for colour in more dorsolateral regions of the occipital lobe.
    Brain 01/1998; 120 ( Pt 12):2229-42. · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expertise with unfamiliar objects ('greebles') recruits face-selective areas in the fusiform gyrus (FFA) and occipital lobe (OFA). Here we extend this finding to other homogeneous categories. Bird and car experts were tested with functional magnetic resonance imaging during tasks with faces, familiar objects, cars and birds. Homogeneous categories activated the FFA more than familiar objects. Moreover, the right FFA and OFA showed significant expertise effects. An independent behavioral test of expertise predicted relative activation in the right FFA for birds versus cars within each group. The results suggest that level of categorization and expertise, rather than superficial properties of objects, determine the specialization of the FFA.
    Nature Neuroscience 03/2000; · 15.25 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014