Three-dimensional imaging of the mouse neurovasculature with magnetic resonance microscopy.

Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
PLoS ONE (Impact Factor: 3.53). 07/2011; 6(7):e22643. DOI: 10.1371/journal.pone.0022643
Source: PubMed

ABSTRACT Knowledge of the three-dimensional (3D) architecture of blood vessels in the brain is crucial because the progression of various neuropathologies ranging from Alzheimer's disease to brain tumors involves anomalous blood vessels. The challenges in obtaining such data from patients, in conjunction with development of mouse models of neuropathology, have made the murine brain indispensable for investigating disease induced neurovascular changes. Here we describe a novel method for "whole brain" 3D mapping of murine neurovasculature using magnetic resonance microscopy (μMRI). This approach preserves the vascular and white matter tract architecture, and can be combined with complementary MRI contrast mechanisms such as diffusion tensor imaging (DTI) to examine the interplay between the vasculature and white matter reorganization that often characterizes neuropathologies. Following validation with micro computed tomography (μCT) and optical microscopy, we demonstrate the utility of this method by: (i) combined 3D imaging of angiogenesis and white matter reorganization in both, invasive and non-invasive brain tumor models; (ii) characterizing the morphological heterogeneity of the vascular phenotype in the murine brain; and (iii) conducting "multi-scale" imaging of brain tumor angiogenesis, wherein we directly compared in vivo MRI blood volume measurements with ex vivo vasculature data.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The blood-brain barrier (BBB) is damaged in tauopathies, including progressive supranuclear palsy (PSP) and Alzheimer's disease (AD), which is thought to contribute to pathogenesis later in the disease course. In AD, BBB dysfunction has been associated with amyloid beta (Aß) pathology, but the role of tau in this process is not well characterized. Since increased BBB permeability is found in tauopathies without Aß pathology, like PSP, we suspected that tau accumulation alone could not only be sufficient, but even more important than Aß for BBB damage. Longitudinal evaluation of brain tissue from the tetracycline-regulatable rTg4510 tau transgenic mouse model showed progressive IgG, T cell and red blood cell infiltration. The Evans blue (EB) dye that is excluded from the brain when the BBB is intact also permeated the brains of rTg4510 mice following peripheral administration, indicative of a bonafide BBB defect, but this was only evident later in life. Thus, despite the marked brain atrophy and inflammation that occurs earlier in this model, BBB integrity is maintained. Interestingly, BBB dysfunction emerged at the same time that perivascular tau emerged around major hippocampal blood vessels. However, when tau expression was suppressed using doxycycline, BBB integrity was preserved, suggesting that the BBB can be stabilized in a tauopathic brain by reducing tau levels. For the first time, these data demonstrate that tau alone can initiate breakdown of the BBB, but the BBB is remarkably resilient, maintaining its integrity in the face of marked brain atrophy, neuroinflammation and toxic tau accumulation. Moreover, the BBB can recover integrity when tau levels are reduced. Thus, late stage interventions targeting tau may slow the vascular contributions to cognitive impairment and dementia that occur in tauopathies.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Most ischemic strokes in humans are caused by ruptured arterial atheroma, which activate platelets and produce thrombi that occlude cerebral vessels. Methods: To simulate these events, we threaded a catheter through the internal carotid artery toward the middle cerebral artery (MCA) orifice and injected collagen directly into the cerebral circulation of male C57Bl/6 mice and Wistar rats. Results: Laser-Doppler flowmetry demonstrated reductions in cerebral blood flow (CBF) of similar to 80% in mice and similar to 60% in rats. CBF spontaneously increased but remained depressed after catheter withdrawal. Magnetic resonance imaging showed that ipsilateral CBF was reduced at 3 h after collagen injection and markedly improved at 48 h. Micro-computed tomography revealed reduced blood vessel density in the ipsilateral MCA territory at 3 h. Gross examination of excised brains revealed thrombi within ipsilateral cerebral arteries at 3 h, but not 24 h, after collagen injection. Immunofluorescence microscopy confirmed that platelets and fibrinogen/fibrin were major components of these thrombi at both macrovascular and microvascular levels. Cerebral infarcts comprising similar to 30% of hemispheric volume and neurobehavioral deficits were observed 48 h after ischemic injury in both mice and rats. Comparison with existing methods: Collagen injection caused brain injury that was similar in magnitude and variability to mechanical MCA occlusion or injection of a pre-formed clot; however, alterations in CBF and the mechanism of vascular occlusion were more consistent with clinical ischemic stroke. Conclusion: This novel rodent model of ischemic stroke has pathophysiologic characteristics consistent with clinical atherothrombotic stroke, is technically feasible, and creates reproducible brain injury.
    Journal of Neuroscience Methods 10/2014; 239. DOI:10.1016/j.jneumeth.2014.10.001 · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Connections between neurons are affected within 3 min of stroke onset by massive ischemic depolarization and then delayed cell death. Some connections can recover with prompt reperfusion; others associated with the dying infarct do not. Disruption in functional connectivity is due to direct tissue loss and indirect disconnections of remote areas known as diaschisis. Stroke is devastating, yet given the brain's redundant design, collateral surviving networks and their connections are well-positioned to compensate. Our perspective is that new treatments for stroke may involve a rational functional and structural connections-based approach. Surviving, affected, and at-risk networks can be identified and targeted with scenario-specific treatments. Strategies for recovery may include functional inhibition of the intact hemisphere, rerouting of connections, or setpoint-mediated network plasticity. These approaches may be guided by brain imaging and enabled by patient- and injury-specific brain stimulation, rehabilitation, and potential molecule-based strategies to enable new connections.
    Neuron 09/2014; 83(6):1354-1368. DOI:10.1016/j.neuron.2014.08.052 · 15.77 Impact Factor

Full-text (3 Sources)

Available from
May 29, 2014