The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal

The Molecular Biology Program, New Mexico State University, Las Cruces, New Mexico, United States of America.
PLoS ONE (Impact Factor: 3.53). 07/2011; 6(7):e22573. DOI: 10.1371/journal.pone.0022573
Source: PubMed

ABSTRACT The fat body is the main organ of intermediary metabolism in insects and the principal source of hemolymph proteins. As part of our ongoing efforts to understand mosquito fat body physiology and to identify novel targets for insect control, we have conducted a transcriptome analysis of the fat body of Aedes aegypti before and in response to blood feeding.
We created two fat body non-normalized EST libraries, one from mosquito fat bodies non-blood fed (NBF) and another from mosquitoes 24 hrs post-blood meal (PBM). 454 pyrosequencing of the non-normalized libraries resulted in 204,578 useable reads from the NBF sample and 323,474 useable reads from the PBM sample. Alignment of reads to the existing reference Ae. aegypti transcript libraries for analysis of differential expression between NBF and PBM samples revealed 116,912 and 115,051 matches, respectively. De novo assembly of the reads from the NBF sample resulted in 15,456 contigs, and assembly of the reads from the PBM sample resulted in 15,010 contigs. Collectively, 123 novel transcripts were identified within these contigs. Prominently expressed transcripts in the NBF fat body library were represented by transcripts encoding ribosomal proteins. Thirty-five point four percent of all reads in the PBM library were represented by transcripts that encode yolk proteins. The most highly expressed were transcripts encoding members of the cathepsin b, vitellogenin, vitellogenic carboxypeptidase, and vitelline membrane protein families.
The two fat body transcriptomes were considerably different from each other in terms of transcript expression in terms of abundances of transcripts and genes expressed. They reflect the physiological shift of the pre-feeding fat body from a resting state to vitellogenic gene expression after feeding.

Download full-text


Available from: Peter Houde, Jul 26, 2015
  • Source
    • "A detailed RNA-Seq comparison of genes differentially expressed by the Ae. aegypti fat body before and after a blood meal revealed that two genes encoding vitellogenic cathepsin B, three genes encoding vitellogenins (vitellogenin A, B, C), and three genes encoding vitellogenic carboxy-peptidases are upregulated several hundredfold in the female fat body 24 h after a blood meal (Price et al., 2011). Together with three lesser expressed vitellin membrane proteins, yolk proteins account for more than a third of all messenger RNAs at this time point which represents the pinnacle of vitellogenesis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anautogenous mosquito females require a meal of vertebrate blood in order to initiate the production of yolk protein precursors by the fat body. Yolk protein precursor gene expression is tightly repressed in a state-of-arrest before blood meal-related signals activate it and expression levels rise rapidly. The best understood example of yolk protein precursor gene regulation is the vitellogenin-A gene (vg) of the yellow fever mosquito Aedes aegypti. Vg-A is regulated by (1) juvenile hormone signaling, (2) the ecdysone-signaling cascade, (3) the nutrient sensitive target-of-rapamycin signaling pathway, and (4) the insulin-like peptide (ILP) signaling pathway. A plethora of new studies have refined our understanding of the regulation of yolk protein precursor genes since the last review on this topic in 2005 (Attardo et al., 2005). This review summarizes the role of these four signaling pathways in the regulation of vg-A and focuses upon new findings regarding the interplay between them on an organismal level.
    Frontiers in Physiology 03/2014; 5:103. DOI:10.3389/fphys.2014.00103 · 3.50 Impact Factor
  • Source
    • "Roche 454 pyrosequencing (Margulies et al., 2005), obtaining these large reliable amounts of sequence information has become much easier. Also, in the field of entomology, this method is being increasingly used to gain insight into different insect genomes, from both agriculturally important nonmodel and non-whole genome sequenced insects (Vera et al., 2008; Pauchet et al., 2009, 2010a,b; Mittapalli et al., 2010; O'Neil et al., 2010; Price et al., 2011). "
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The citrus red mite is a worldwide citrus pest and a common sensitizing allergen of asthma and rhinitis. It has developed strong resistance to many registered acaricides, However, the molecular mechanisms of resistance remain unknown. we therefore used next generation sequencing technology to investigate the global transcriptomes between resistant strains and susceptible strains. We obtained 34,159, 30,466 and 32,217 unigenes by assembling the SS reads, RS reads and SS&RS reads respectively. There are total 17,581 annotated unigenes from SS&RS reads by BLAST searching databases of nr, the Clusters of Orthologous Groups (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) with an E-value ≤ 1e-5, in which 7,075 unigenes were annotated in the COG database, 12, 712 unigenes were found in the KEGG database and 3,812 unigenes were assigned to Gene ontology (GO). Moreover, 2,701 unigenes were judged to be the differentially expressed genes (DEGs) based on the uniquely mapped reads. There are 219 pathways in all annotated unigenes and 198 pathways in DEGs that mapped to the KEGG database. We identified 211 metabolism genes and target genes related to general insecticide resistance such as P450 and Cytochrome b, and further compared their differences between RS and SS. Meanwhile, we identified 105 and 194 genes related to growth and reproduction, respectively, based on the mode of action of Hexythiazox. After further analyses, we found variation in sequences but not in gene expression related to mite growth and reproduction between different strains. To our knowledge, this is the first comparative transcriptome study to discover candidate genes involved in phytophagous mite resistance. This study identified differential unigenes related to general pesticide resistance and organism growth and reproduction in P. citri. The assembled, annotated transcriptomes provide a valuable genomic resource for further understanding the molecular basis of resistance mechanisms.
    PLoS ONE 12/2011; 6(12):e28516. DOI:10.1371/journal.pone.0028516 · 3.53 Impact Factor
Show more