Article

Nucleoporin mediated nuclear positioning and silencing of HMR.

Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(7):e21923. DOI: 10.1371/journal.pone.0021923
Source: PubMed

ABSTRACT The organization of chromatin domains in the nucleus is an important factor in gene regulation. In eukaryotic nuclei, transcriptionally silenced chromatin clusters at the nuclear periphery while transcriptionally poised chromatin resides in the nuclear interior. Recent studies suggest that nuclear pore proteins (NUPs) recruit loci to nuclear pores to aid in insulation of genes from silencing and during gene activation. We investigated the role of NUPs at a native yeast insulator and show that while NUPs localize to the native tDNA insulator adjacent to the silenced HMR domain, loss of pore proteins does not compromise insulation. Surprisingly we find that NUPs contribute to silencing at HMR and are able to restore silencing to a silencing-defective HMR allele when tethered to the locus. We show that the perinuclear positioning of heterochromatin is important for the NUP-mediated silencing effect and find that loss of NUPs result in decreased localization of HMR to the nuclear periphery. We also show that loss of telomeric tethering pathways does not eliminate NUP localization to HMR, suggesting that NUPs may mediate an independent pathway for HMR association with the nuclear periphery. We propose that localization of NUPs to the tDNA insulator at HMR helps maintain the intranuclear position of the silent locus, which in turn contributes to the fidelity of silencing at HMR.

0 Bookmarks
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes.
    The EMBO Journal 11/2011; 31(2):330-50. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: tRNA genes (tDNAs) have been known to have barrier insulator function in budding yeast, Saccharomyces cerevisiae, for over a decade. tDNAs also play a role in genome organization by clustering at sites in the nucleus and both of these functions are dependent on the transcription factor TFIIIC. More recently TFIIIC bound sites devoid of pol III, termed Extra-TFIIIC sites (ETC) have been identified in budding yeast and these sites also function as insulators and affect genome organization. Subsequent studies in Schizosaccharomyces pombe showed that TFIIIC bound sites were insulators and also functioned as Chromosome Organization Clamps (COC); tethering the sites to the nuclear periphery. Very recently studies have moved to mammalian systems where pol III genes and their associated factors have been investigated in both mouse and human cells. Short interspersed nuclear elements (SINEs) that bind TFIIIC, function as insulator elements and tDNAs can also function as both enhancer — blocking and barrier insulators in these organisms. It was also recently shown that tDNAs cluster with other tDNAs and with ETCs but not with pol II transcribed genes. Intriguingly, TFIIIC is often found near pol II transcription start sites and it remains unclear what the consequences of TFIIIC based genomic organization are and what influence pol III factors have on pol II transcribed genes and vice versa. In this review we provide a comprehensive overview of the known data on pol III factors in insulation and genome organization and identify the many open questions that require further investigation. This article is part of a Special Issue entitled: Transcription by Odd Pols.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 09/2012; 1829(s 3–4):418–424. · 5.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin function requires specific three-dimensional architectures of chromosomes. We investigated whether Saccharomyces cerevisiae extra TFIIIC (ETC) sites, which bind the TFIIIC transcription factor but do not recruit RNA polymerase III, show specific intranuclear positioning. We show that six of the eight known S. cerevisiae ETC sites localize predominantly at the nuclear periphery, and that ETC sites retain their tethering function when moved to a new chromosomal location. Several lines of evidence indicate that TFIIIC is central to the ETC peripheral localization mechanism. Mutating or deleting the TFIIIC-binding consensus ablated ETC -site peripheral positioning, and inducing degradation of the TFIIIC subunit Tfc3 led to rapid release of an ETC site from the nuclear periphery. We find, moreover, that anchoring one TFIIIC subunit at an ectopic chromosomal site causes recruitment of others and drives peripheral tethering. Localization of ETC sites at the nuclear periphery also requires Mps3, a Sad1-UNC-84-domain protein that spans the inner nuclear membrane. Surprisingly, we find that the chromatin barrier and insulator functions of an ETC site do not depend on correct peripheral localization. In summary, TFIIIC and Mps3 together direct the intranuclear positioning of a new class of S. cerevisiae genomic loci positioned at the nuclear periphery.
    Molecular biology of the cell 04/2012; 23(14):2741-54. · 5.98 Impact Factor

Full-text (3 Sources)

View
27 Downloads
Available from
May 19, 2014