Kajfasz JK, Abranches J, Lemos JA.. Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans. Microbiology 157: 2880-2890

Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.
Microbiology (Impact Factor: 2.56). 08/2011; 157(Pt 10):2880-90. DOI: 10.1099/mic.0.052407-0
Source: PubMed


The ClpXP proteolytic complex is critical for maintaining cellular homeostasis, as well as expression of virulence properties. However, with the exception of the Spx global regulator, the molecular mechanisms by which the ClpXP complex exerts its influence in Streptococcus mutans are not well understood. Here, microarray analysis was used to provide novel insights into the scope of ClpXP proteolysis in S. mutans. In a ΔclpP strain, 288 genes showed significant changes in relative transcript amounts (P≤0.001, twofold cut-off) as compared with the parent. Similarly, 242 genes were differentially expressed by a ΔclpX strain, 113 (47 %) of which also appeared in the ΔclpP microarrays. Several genes associated with cell growth were downregulated in both mutants, consistent with the slow-growth phenotype of the Δclp strains. Among the upregulated genes were those encoding enzymes required for the biosynthesis of intracellular polysaccharides (glg genes) and malolactic fermentation (mle genes). Enhanced expression of glg and mle genes in ΔclpP and ΔclpX strains correlated with increased storage of intracellular polysaccharide and enhanced malolactic fermentation activity, respectively. Expression of several genes known or predicted to be involved in competence and mutacin production was downregulated in the Δclp strains. Follow-up transformation efficiency and deferred antagonism assays validated the microarray data by showing that competence and mutacin production were dramatically impaired in the Δclp strains. Collectively, our results reveal the broad scope of ClpXP regulation in S. mutans homeostasis and identify several virulence-related traits that are influenced by ClpXP proteolysis.

Download full-text


Available from: Jacqueline Abranches, Feb 10, 2015
5 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using B. subtilis as a model organism, we investigated thermotolerance development by analyzing cell survival and in vivo protein aggregate formation in severely heat shocked cells primed by a mild heat shock. We observed an increased survival during severe heat stress, accompanied by a strong reduction of heat-induced cellular protein aggregates in cells lacking the ClpXP protease. We could demonstrate that the transcription factor Spx, a regulatory substrate of ClpXP, is critical for the prevention of protein aggregate formation because its regulon encodes redox chaperones, such as thioredoxin, required for protection against thiol specific oxidative stress. Consequently B. subtilis cells grown in the absence of oxygen were more protected against severe heat shock and much less protein aggregates were detected compared to aerobically grown cells. The presented results indicate that in B. subtilis Spx and its regulon plays not only an important role for oxidative but also for heat stress response and thermotolerance development. In addition, our experiments suggest that the protection of misfolded proteins from thiol oxidation during heat shock can be critical for the prevention of cellular protein aggregation in vivo.
    Molecular Microbiology 01/2014; 91(5). DOI:10.1111/mmi.12521 · 4.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular.
    Microbiology and molecular biology reviews: MMBR 03/2014; 78(1):74-88. DOI:10.1128/MMBR.00039-13 · 14.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CRISPR-Cas systems provide adaptive microbial immunity against invading viruses and plasmids. The cariogenic bacterium Streptococcus mutans UA159 has two CRISPR-Cas systems: CRISPR1 (type II-A) and CRISPR2 (type I-C) with several spacers from both CRISPPR cassettes matching sequences of phage M102 or genomic sequences of other S. mutans. Deletion of cas genes of CRISPR1 (ΔC1S), CRISPR2 (ΔC2E), both CRISPR1+2 (ΔC1SC2E) or removal of spacers 2 and 3 (ΔCR1SP13E) in S. mutans UA159 did not affect phage sensitivity when challenged with virulent phage M102. Using plasmid transformation experiments, we demonstrated that the CRISPR1-Cas system inhibits transformation of S. mutans by the plasmids matching the spacers 2 and 3. Functional analysis of the cas deletion mutants revealed that in addition to a role in plasmid targeting, both CRISPR systems also contribute to the regulation of bacterial physiology in S. mutans. Compared to wild type cells, the ΔC1S strain displayed diminished growth under cell membrane and oxidative stress, enhanced growth under low pH and had reduced survival under heat shock and DNA damaging conditions, whereas the ΔC2E strain exhibited increased sensitivity to heat shock. Transcriptional analysis revealed that the two-component signal transduction system VicR/K differentially modulates expression of cas genes within CRISPR-Cas systems suggesting that VicR/K might coordinate the expression of two CRISPR-Cas systems. Collectively, we provide in vivo evidence that the type II-A CRISPR-Cas system of S. mutans may be targeted to manipulate its stress response and to influence the host to control the uptake and dissemination of antibiotic resistance genes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
    Journal of Bacteriology 12/2014; 197(4). DOI:10.1128/JB.02333-14 · 2.81 Impact Factor
Show more