Cadherin-dependent cell morphology in an epithelium: constructing a quantitative dynamical model.

Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America.
PLoS Computational Biology (Impact Factor: 4.83). 07/2011; 7(7):e1002115. DOI: 10.1371/journal.pcbi.1002115
Source: PubMed

ABSTRACT Cells in the Drosophila retina have well-defined morphologies that are attained during tissue morphogenesis. We present a computer simulation of the epithelial tissue in which the global interfacial energy between cells is minimized. Experimental data for both normal cells and mutant cells either lacking or misexpressing the adhesion protein N-cadherin can be explained by a simple model incorporating salient features of morphogenesis that include the timing of N-cadherin expression in cells and its temporal relationship to the remodeling of cell-cell contacts. The simulations reproduce the geometries of wild-type and mutant cells, distinguish features of cadherin dynamics, and emphasize the importance of adhesion protein biogenesis and its timing with respect to cell remodeling. The simulations also indicate that N-cadherin protein is recycled from inactive interfaces to active interfaces, thereby modulating adhesion strengths between cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding how a functional organ can be produced from a small group of cells remains an outstanding question in cell and developmental biology. The developing compound eye of Drosophila has long been a model of choice for addressing this question by dissecting the cellular, genetic and molecular pathways that govern cell specification, differentiation, and multicellular patterning during organogenesis. In this review, I focus on cell and tissue morphogenesis during fly retinal development, including the regulated changes in cell shape and cell packing that ultimately determine the shape and architecture of the compound eye. In particular, I review recent studies that highlight the prominent roles of transcriptional and hormonal controls that orchestrate the cell shape changes, cell-cell junction remodeling and polarized membrane growth that underlie photoreceptor morphogenesis and retinal patterning.
    Developmental Biology 10/2013; · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslational modification, recycling and turnover. Importantly, even ubiquitous adhesion components can function differently in distinct cellular contexts.
    Current opinion in cell biology 08/2012; 24(5):702-12. · 14.15 Impact Factor

Full-text (2 Sources)

Available from
Oct 13, 2014