Article

Cadherin-Dependent Cell Morphology in an Epithelium: Constructing a Quantitative Dynamical Model

Massachusetts Institute of Technology, United States of America
PLoS Computational Biology (Impact Factor: 4.83). 07/2011; 7(7):e1002115. DOI: 10.1371/journal.pcbi.1002115
Source: PubMed

ABSTRACT Author Summary
Tissues are intricate, heterogeneous systems, consisting of individual cells whose shapes and relative positions are of great importance to the tissue's function, as well as to its formation during morphogenesis. To make progress in our understanding of the formation of organs, their malfunction, and their therapeutic replacement in regenerative medicine, it is crucial to elucidate the connection between shape and function. We have developed a quantitative mechanical model of an epithelial tissue, the retina of Drosophila, and compare the modeling results with experimental data. The model successfully predicts shape changes induced by different expression levels of cell-cell adhesion molecules. Furthermore, the model gives new insight into the changes a tissue undergoes during morphogenesis. Comparing simulations and experiments, we are able to accept or reject different hypotheses about morphogenetic dynamics. In this way, we can identify the time course of adhesion molecule synthesis and of cell-cell contact, as well as gain new insight into the regulation of adhesion strength. Given the prominent role of adhesion in wound healing, cancer research, and many other fields, our fundamental work introduces a novel modeling tool of universal applicability and importance.

0 Followers
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since F T Lewis' pioneering work in the 1920s, a linear correlation between the average in-plane area of domains in a two-dimensional (2D) cellular structure and the number of neighbors of the domains has been empirically proposed, with many supporting and dissenting findings in the ensuing decades. Revisiting Lewis' original experiment, we take a larger set of more detailed data on the cells in the epidermal layer of Cucumis, and analyze the data in the light of recent results on size-topology correlations. We find that the correlation between the number-of-neighbor distribution (topology) and the area distribution is altered over that of many other 2D cellular systems (such as foams or disc packings), and that the systematic deviation can be explained by the anisotropic shape of the Cucumis cells. We develop a novel theory of size-topology correlation taking into account the characteristic aspect ratio of the cells within the framework of a granocentric model, and show that both Lewis' and our experimental data is consistent with the theory. In contrast to the granocentric model for isotropic domains, the new theory results in an approximately linear correlation consistent with Lewis' law. These statistical effects can be understood from the increased number of configurations available to a plane-filling domain system with non-isotropic elements, for the first time providing a firm explanation of why Lewis' law is valid in some systems and fails in others.
    New Journal of Physics 12/2013; 16(1). DOI:10.1088/1367-2630/16/1/015024 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The architecture and morphogenetic properties of tissues are founded in the tissue-specific regulation of cell behaviors. In endochondral bones, the growth plate cartilage promotes bone elongation via regulated chondrocyte maturation within an ordered, three-dimensional cell array. A key event in the process that generates this cell array is the transformation of disordered resting chondrocytes into clonal columns of discoid proliferative cells aligned with the primary growth vector. Previous analysis showed that column-forming chondrocytes display planar cell divisions, and the resulting daughter cells rearrange by ∼90° to align with the lengthening column. However, these previous studies provided limited information about the mechanisms underlying this dynamic process. Here we present new mechanistic insights generated by application of a novel time-lapse confocal microscopy method along with immunofluorescence and electron microscopy. We show that, during cell division, daughter chondrocytes establish a cell-cell adhesion surface enriched in cadherins and β-catenin. Rearrangement into columns occurs concomitant with expansion of this adhesion surface in a process more similar to cell spreading than to migration. Column formation requires cell-cell adhesion, as reducing cadherin binding via chelation of extracellular calcium inhibits chondrocyte rearrangement. Importantly, physical indicators of cell polarity, such as cell body alignment, are not prerequisites for oriented cell behavior. Our results support a model in which regulation of adhesive surface dynamics and cortical tension by extrinsic signaling modifies the thermodynamic landscape to promote organization of daughter cells in the context of the three-dimensional growth plate tissue.
    Development 04/2014; 141(10). DOI:10.1242/dev.105452 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The folding of epithelial sheets, accompanied by cell shape changes and rearrangements, gives rise to three-dimensional structures during development. Recently, some aspects of epithelial morphogenesis have been modeled using vertex models, in which each cell is approximated by a polygon; however, these models have been largely confined to two dimensions. Here, we describe an adaptation of these models in which the classical two-dimensional vertex model is embedded in three dimensions. This modification allows for the construction of complex three-dimensional shapes from simple sheets of cells. We describe algorithmic, computational, and biophysical aspects of our model, with the view that it may be useful for formulating and testing hypotheses regarding the mechanical forces underlying a wide range of morphogenetic processes.
    Physical Biology 12/2014; 11(6):066007. DOI:10.1088/1478-3975/11/6/066007 · 3.14 Impact Factor

Full-text (2 Sources)

Download
7 Downloads
Available from
Oct 13, 2014