Article

Cadherin-Dependent Cell Morphology in an Epithelium: Constructing a Quantitative Dynamical Model

Massachusetts Institute of Technology, United States of America
PLoS Computational Biology (Impact Factor: 4.83). 07/2011; 7(7):e1002115. DOI: 10.1371/journal.pcbi.1002115
Source: PubMed

ABSTRACT Author Summary
Tissues are intricate, heterogeneous systems, consisting of individual cells whose shapes and relative positions are of great importance to the tissue's function, as well as to its formation during morphogenesis. To make progress in our understanding of the formation of organs, their malfunction, and their therapeutic replacement in regenerative medicine, it is crucial to elucidate the connection between shape and function. We have developed a quantitative mechanical model of an epithelial tissue, the retina of Drosophila, and compare the modeling results with experimental data. The model successfully predicts shape changes induced by different expression levels of cell-cell adhesion molecules. Furthermore, the model gives new insight into the changes a tissue undergoes during morphogenesis. Comparing simulations and experiments, we are able to accept or reject different hypotheses about morphogenetic dynamics. In this way, we can identify the time course of adhesion molecule synthesis and of cell-cell contact, as well as gain new insight into the regulation of adhesion strength. Given the prominent role of adhesion in wound healing, cancer research, and many other fields, our fundamental work introduces a novel modeling tool of universal applicability and importance.

Download full-text

Full-text

Available from: Richard W Carthew, Oct 13, 2014
0 Followers
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslational modification, recycling and turnover. Importantly, even ubiquitous adhesion components can function differently in distinct cellular contexts.
    Current opinion in cell biology 08/2012; 24(5):702-12. DOI:10.1016/j.ceb.2012.07.006 · 8.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding how a functional organ can be produced from a small group of cells remains an outstanding question in cell and developmental biology. The developing compound eye of Drosophila has long been a model of choice for addressing this question by dissecting the cellular, genetic and molecular pathways that govern cell specification, differentiation, and multicellular patterning during organogenesis. In this review, I focus on cell and tissue morphogenesis during fly retinal development, including the regulated changes in cell shape and cell packing that ultimately determine the shape and architecture of the compound eye. In particular, I review recent studies that highlight the prominent roles of transcriptional and hormonal controls that orchestrate the cell shape changes, cell-cell junction remodeling and polarized membrane growth that underlie photoreceptor morphogenesis and retinal patterning.
    Developmental Biology 10/2013; 385(2). DOI:10.1016/j.ydbio.2013.09.031 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since F T Lewis' pioneering work in the 1920s, a linear correlation between the average in-plane area of domains in a two-dimensional (2D) cellular structure and the number of neighbors of the domains has been empirically proposed, with many supporting and dissenting findings in the ensuing decades. Revisiting Lewis' original experiment, we take a larger set of more detailed data on the cells in the epidermal layer of Cucumis, and analyze the data in the light of recent results on size-topology correlations. We find that the correlation between the number-of-neighbor distribution (topology) and the area distribution is altered over that of many other 2D cellular systems (such as foams or disc packings), and that the systematic deviation can be explained by the anisotropic shape of the Cucumis cells. We develop a novel theory of size-topology correlation taking into account the characteristic aspect ratio of the cells within the framework of a granocentric model, and show that both Lewis' and our experimental data is consistent with the theory. In contrast to the granocentric model for isotropic domains, the new theory results in an approximately linear correlation consistent with Lewis' law. These statistical effects can be understood from the increased number of configurations available to a plane-filling domain system with non-isotropic elements, for the first time providing a firm explanation of why Lewis' law is valid in some systems and fails in others.
    New Journal of Physics 12/2013; 16(1). DOI:10.1088/1367-2630/16/1/015024 · 3.67 Impact Factor