Article

Rat performance on visual detection task modeled with divisive normalization and adaptive decision thresholds.

Deparment of Neurosciences, University of California, San Diego, CA, USA.
Journal of Vision (Impact Factor: 2.73). 01/2011; 11(9). DOI: 10.1167/11.9.1
Source: PubMed

ABSTRACT Performance on any perceptual task depends on both the perceptual capacity and the decision strategy of the subject. We provide a model to fit both aspects and apply it to data from rats performing a detection task. When rats must detect a faint visual target, the presence of other nearby stimuli ("flankers") increases the difficulty of the task. In this study, we consider two specific factors. First, flankers could diminish the sensory response to the target via spatial contrast normalization in early visual processing. Second, rats may treat the sensory signal caused by the flankers as if it belonged to the target. We call this source confusion, which may be sensory, cognitive, or both. We account for contrast normalization and source confusion by fitting model parameters to the likelihood of the observed behavioral data. We test multiple combinations of target and flanker contrasts using a yes/no detection task. Contrast normalization was crucial to explain the rats' flanker-induced detection impairment. By adding a decision variable to the contrast normalization framework, our model provides a new tool to assess differences in visual or cognitive brain function between normal and abnormal rodents.

0 Bookmarks
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units-15% in frontal cortex, 23% in parietal cortex-significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.
    PLoS ONE 12/2014; 9(12):e114064. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential of genetically engineered rodent models has accelerated demand for training procedures of behavioral tasks. Such training is generally time consuming and often shows large variability in learning speed between animals. To overcome these problems, we developed an efficient and stable training system for the two-alternative forced-choice (2AFC) visual stimulus detection task for freely behaving rodents. To facilitate the task learning, we introduced a spout-lever as the operandum and a three-step training program with four ingenuities: (1) a salient stimulus to draw passive attention, (2) a reward-guaranteed trial to keep motivation, (3) a behavior-corrective trial, and (4) switching from a reward-guaranteed trial to a nonguaranteed one to correct behavioral patterns. Our new training system realizes 1-week completion of the whole learning process, during which all rats were able to learn effortlessly the association between (1) lever-manipulation and reward and (2) visual stimulus and reward in a step-by-step manner. Thus, our new system provides an effective and stable training method for the 2AFC visual stimulus detection task. This method should help accelerate the move toward research bridging the visual functions measured in behavioral tasks and the contributing specific neurons/networks that are genetically manipulated or optically controlled.
    Physiological Reports. 07/2014; 2(7).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. Copyright © 2015. Published by Elsevier B.V.
    Behavioural Brain Research 01/2015; · 3.39 Impact Factor

Similar Publications