Article

The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF) localization

Department of Molecular and Experimental Medicine, The Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, CA 92037, USA. .
Epigenetics & Chromatin (Impact Factor: 4.46). 08/2011; 4:13. DOI: 10.1186/1756-8935-4-13
Source: PubMed

ABSTRACT Transcription initiation RNAs (tiRNAs) are nuclear localized 18 nucleotide RNAs derived from sequences immediately downstream of RNA polymerase II (RNAPII) transcription start sites. Previous reports have shown that tiRNAs are intimately correlated with gene expression, RNA polymerase II binding and behaviors, and epigenetic marks associated with transcription initiation, but not elongation.
In the present work, we show that tiRNAs are commonly found at genomic CCCTC-binding factor (CTCF) binding sites in human and mouse, and that CTCF sites that colocalize with RNAPII are highly enriched for tiRNAs. To directly investigate the relationship between tiRNAs and CTCF we examined tiRNAs originating near the intronic CTCF binding site in the human tumor suppressor gene, p21 (cyclin-dependent kinase inhibitor 1A gene, also known as CDKN1A). Inhibition of CTCF-proximal tiRNAs resulted in increased CTCF localization and increased p21 expression, while overexpression of CTCF-proximal tiRNA mimics decreased CTCF localization and p21 expression. We also found that tiRNA-regulated CTCF binding influences the levels of trimethylated H3K27 at the alternate upstream p21 promoter, and affects the levels of alternate p21 (p21alt) transcripts. Extending these studies to another randomly selected locus with conserved CTCF binding we found that depletion of tiRNA alters nucleosome density proximal to sites of tiRNA biogenesis.
Taken together, these data suggest that tiRNAs modulate local epigenetic structure, which in turn regulates CTCF localization.

Download full-text

Full-text

Available from: John S Mattick, Jun 13, 2015
0 Followers
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background:Gastrointestinal stromal tumour (GIST) is mainly initialised by receptor tyrosine kinase gene mutations. Although the tyrosine kinase inhibitor imatinib mesylate considerably improved the outcome of patients, imatinib resistance still remains a major therapeutic challenge in GIST therapy. Herein we evaluated the clinical impact of microRNAs in imatinib-treated GISTs.Methods:The expression levels of microRNAs were quantified using microarray and RT-qPCR in GIST specimens from patients treated with neoadjuvant imatinib. The functional roles of miR-125a-5p and PTPN18 were evaluated in GIST cells. PTPN18 expression was quantified by western blotting in GIST samples.Results:We showed that overexpression levels of miR-125a-5p and miR-107 were associated with imatinib resistance in GIST specimens. Functionally, miR-125a-5p expression modulated imatinib sensitivity in GIST882 cells with a homozygous KIT mutation but not in GIST48 cells with double KIT mutations. Overexpression of miR-125a-5p suppressed PTPN18 expression, and silencing of PTPN18 expression increased cell viability in GIST882 cells upon imatinib treatment. PTPN18 protein levels were significantly lower in the imatinib-resistant GISTs and inversely correlated with miR-125a-5p. Furthermore, several microRNAs were significantly associated with metastasis, KIT mutational status and survival.Conclusions:Our findings highlight a novel functional role of miR-125a-5p on imatinib response through PTPN18 regulation in GIST.British Journal of Cancer advance online publication, 30 October 2014; doi:10.1038/bjc.2014.548 www.bjcancer.com.
    British Journal of Cancer 10/2014; DOI:10.1038/bjc.2014.548 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new class of bacterial small RNAs have been identified. They are related to eukaryotic tiRNAs in their localization (transcription start sites, TSS) but not in their biogenesis. tssRNAs are generated at the same positions as long transcripts, as well as at independent positions, but both seem to have promoter-like characteristics (Pribnow box). We provide compelling evidence that tssRNAs are not mRNA degradation products and neither abortive transcripts; rather, they are newly synthesized transcripts and require more factors than the basal transcription machinery (i.e., RNA polymerase subunits) tssRNAs show dynamic behavior dependent on the growth phase. We show that RNA polymerase is halted at tssRNAs positions, both in bona fide genes and in positions where no long transcript is produced. This indicates that tssRNAs could be generated by RNA polymerase pausing to ensure that no spurious long RNA is generated by random appearance of Pribnow sequences in the genome.
    Molecular Systems Biology 05/2012; 8:585. DOI:10.1038/msb.2012.16 · 14.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24,000 sncRNAs within each normal human spermatozoon. RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18-30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈ 7%), Piwi-interacting piRNAs (≈ 17%), repeat-associated small RNAs (≈ 65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈ 11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization.
    Human Reproduction 12/2011; 26(12):3401-12. DOI:10.1093/humrep/der329 · 4.59 Impact Factor