Article

Recombinant antigen production for assays of intradermoreaction for diagnosis and surveillance of tuberculosis.

Laboratory of Forensic Molecular Genetics, Institute of Criminology, 80010-100 Curitiba, Brazil.
Journal of Biotechnology (Impact Factor: 3.18). 07/2011; 156(1):56-8. DOI: 10.1016/j.jbiotec.2011.07.015
Source: PubMed

ABSTRACT The goal of the present work was to develop reagents with potential for tuberculosis diagnosis. Genetic sequences of Mycobacterium tuberculosis secretion antigens were amplified by PCR, cloned into the Gateway(®) system, and expressed in Escherichia coli. The recombinant M. tuberculosis proteins were purified by metal affinity chromatography and preparative gel SDS-PAGE electrophoresis followed by electroelution and removal of endotoxins using Triton X-114. In total, seven recombinant proteins were obtained (ESAT-6, CFP10, TB10.3, TB10.4, MTSP11, MPT70, and MPT83). Delayed hypersensitivity reactions (DHR) was evaluated in Cavia porcellus and compared to the response using a standard purified protein derivative (PPD). All seven recombinant proteins produced a positive induration reaction in an intradermal test in guinea pigs previously sensitized with M. tuberculosis. When applied together, at a concentration of each recombinant protein 0.04 mg/mL, the intradermoreaction in C. porcellus was significantly higher than that obtained by standard PPD (p-value=0.00386).

0 Bookmarks
 · 
165 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of multi- and extensively-drug resistant strains of Mycobacterium tuberculosis makes the development of novel anti-tubercular compounds and the identification of alternative mycobacterial drugable targets urgent priorities. Recently, type VII secretion systems (T7SS) have been discovered in mycobacteria. The genome of M. tuberculosis encodes 5 of such systems (ESX-1 to -5), three of which have been characterized and shown to be essential for viability (ESX-3, ESX-5) or virulence (ESX-1, ESX-5). Because of their crucial role in host-pathogen interactions as well as their involvement in basic biological processes of tubercle bacilli, T7SS/ESX represent promising targets for novel anti-tuberculosis drugs. Here, we review the current knowledge of the T7SS/ESX and their impact on M. tuberculosis physiology and virulence. Finally, we discuss the possible approaches to develop T7SS/ESX inhibitors.
    Current pharmaceutical design 11/2013; · 4.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Delayed type hypersensitivity skin test (DTH) and interferon-gamma assay are used for the diagnosis of bovine tuberculosis (TBB). The specificity of these diagnoses, however, is compromised because both are based on the response against purified protein derivative of Mycobacterium bovis (PPD-B). In this study, we assessed the potential of two cocktails containing M. bovis recombinant proteins: cocktail 1 (C1): ESAT-6, CFP-10 and MPB83 and cocktail 2 (C2): ESAT-6, CFP-10, MPB83, HspX, TB10.3, and MPB70. C1, C2, and PPD-B showed similar response by DTH in M. bovis-sensitized guinea pigs. Importantly, C1 induced a lower response than PPD-B in M. avium-sensitized guinea pigs. In cattle, C1 displayed better performance than PPD-B and C2; indeed, C1 showed the least detection of animals either vaccinated or Map-infected. To optimize the composition of the cocktails, we obtained protein fractions from PPD-B and tested their immunogenicity in experimentally M. bovis-infected cattle. In one highly reactive fraction, seven proteins were identified. The inclusion of FixB in C1 enhanced the recognition of M. bovis-infected cattle without compromising specificity. Our data provide a promising basis for the future development of a cocktail for TBB detection without interference by the presence of sensitized or infected animals with other mycobacteria.
    BioMed Research International 01/2014; 2014:140829. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of multi- and extensively-drug resistant strains of Mycobacterium tuberculosis makes the development of novel anti-tubercular compounds and the identification of alternative mycobacterial drugable targets urgent priorities. Recently, type VII secretion systems (T7SS) have been discovered in mycobacteria. The genome of M. tuberculosis encodes 5 of such systems (ESX-1 to -5), three of which have been characterized and shown to be essential for viability (ESX-3, ESX-5) or virulence (ESX-1, ESX-5). Because of their crucial role in host-pathogen interactions as well as their involvement in basic biological processes of tubercle bacilli, T7SS/ESX represent promising targets for novel anti-tuberculosis drugs. Here, we review the current knowledge of the T7SS/ESX and their impact on M. tuberculosis physiology and virulence. Finally, we discuss the possible approaches to develop T7SS/ESX inhibitors
    Current Pharmaceutical Design 11/2013; 39. · 3.31 Impact Factor