Chromatin remodelling in mammalian cells by ISWI-type complexes--where, when and why?

Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, Heidelberg, Germany.
FEBS Journal (Impact Factor: 3.99). 08/2011; 278(19):3608-18. DOI: 10.1111/j.1742-4658.2011.08282.x
Source: PubMed

ABSTRACT The specific location of nucleosomes on DNA has important inhibitory or activating roles in the regulation of DNA-dependent processes as it affects the DNA accessibility. Nucleosome positions depend on the ATP-coupled activity of chromatin-remodelling complexes that translocate nucleosomes or evict them from the DNA. The mammalian cell harbors numerous different remodelling complexes that possess distinct activities. These can translate a variety of signals into certain patterns of nucleosome positions with specific functions. Although chromatin remodellers have been extensively studied in vitro, much less is known about how they operate in their cellular environment. Here, we review the cellular activities of the mammalian imitation switch proteins and discuss mechanisms by which they are targeted to sites where their activity is needed.


Available from: Fabian Erdel, May 28, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.
    Biophysical Journal 11/2014; 107(9). DOI:10.1016/j.bpj.2014.09.026 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we review the role of sucrose nonfermenting (SNF2) family enzymes in blood cell development. The SNF2 family comprises helicase-like ATPases, originally discovered in yeast, that can remodel chromatin by changing chromatin structure and composition. The human genome encodes 30 different SNF2 enzymes. SNF2 family enzymes are often part of multisubunit chromatin remodeling complexes (CRCs), which consist of noncatalytic/auxiliary subunit along with the ATPase subunit. However, blood cells express a limited set of SNF2 ATPases that are necessary to maintain the pool of hematopoietic stem cells (HSCs) and drive normal blood cell development and differentiation. The composition of CRCs can be altered by the association of specific auxiliary subunits. Several auxiliary CRC subunits have specific functions in hematopoiesis. Aberrant expressions of SNF2 ATPases and/or auxiliary CRC subunit(s) are often observed in hematological malignancies. Using large-scale data from the International Cancer Genome Consortium (ICGC) we observed frequent mutations in genes encoding SNF2 helicase-like enzymes and auxiliary CRC subunits in leukemia. Hence, orderly function of SNF2 family enzymes is crucial for the execution of normal blood cell developmental program, and defects in chromatin remodeling caused by mutations or aberrant expression of these proteins may contribute to leukemogenesis.
    02/2015; 2015:347571. DOI:10.1155/2015/347571
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA.
    Cell cycle (Georgetown, Tex.) 10/2014; 13(19):3016--3025. DOI:10.4161/15384101.2014.956551 · 5.01 Impact Factor