Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography.

The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, M018, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
Journal of Biomedical Optics (Impact Factor: 2.75). 07/2011; 16(7):076013. DOI: 10.1117/1.3598842
Source: PubMed

ABSTRACT Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stiffness of the myogenic stem cell microenvironment markedly influences the ability to regenerate tissue. We studied the effect of damaged myofibers on myogenic progenitor cell (MPC) proliferation and determined whether the structural integrity of the microenvironment contributes to phenotypic changes. Individual myofibers were isolated and cultured for 6 days. During this period, the cytoskeleton of myofibers and transcription factors regulating MPC differentiation were characterized by immunostaining. Atomic Force Microscopy (AFM) was performed to measure stiffness of cultured myofibers. Healthy and damaged myofibers, and their associated MPCs, were studied in skeletal muscle from dystrophic and tenotomy mouse models. MPCs were cultured on stiffness-tunable substrates, and their phenotypes were assessed by immunostaining of myogenic transcription factors. We showed that individual myofibers tend to shrink or collapse when cultured ex vivo starting from day 1 and that this is associated with a marked increase in the number of proliferative MPCs (Pax7(+)MyoD(+)). The myofibers collapsed due to a loss of viability as shown by Evans blue dye uptake and the disorganization of their cytoskeletons. Interestingly, collapsed myofibers in mdx skeletal muscles were similar to damaged myofibers in that they lose their viability, have a disorganized cytoskeleton (actin and α-actinin), and display local MPC (MyoD(+)) proliferation at their periphery. In a tenotomy model that causes loss of muscle tension, the cytoskeletal disorganization of myofibers also correlated with the activation/proliferation of MPCs. A deeper analysis of collapsed myofibers revealed that they produce trophic factors that influence MPC proliferation. In addition, collapsed myofibers expressed several genes related to the basal lamina. Immunostaining revealed the presence of fibronectin in the basal lamina and the cytoplasm of damaged myofibers. Lastly, using atomic force microscopy (AFM), we showed that collapsed myofibers exhibit greater stiffness than intact myofibers. Growing MPCs on a 2-kPa polyacrylamide-based substrate, exempt of additional microenvironmental cues, recapitulated proliferation and reduced spontaneous differentiation compared to growth on a 0.5-kPa substrate. Our results support the notion that collapsed or damaged myofibers increase the structural stiffness of the satellite cell microenvironment, which in addition to other cues such as trophic factors and changes in extracellular matrix composition, promotes the proliferation and maintenance of MPCs, required for myofiber repair.
    02/2015; 5(1). DOI:10.1186/s13395-015-0030-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical polarization tractography (OPT) was recently developed to visualize tissue fiber architecture with cellular-level resolution and accuracy. In this study, we explored the feasibility of using OPT to study muscle disease in the mdx4cv mouse model of Duchenne muscular dystrophy. The freshly dissected tibialis anterior muscles of mdx4cv and normal mice were imaged. A “fiber disarray index” (FDI) was developed to quantify the myofiber disorganization. In necrotic muscle regions of the mdx4cv mice, the FDI was significantly elevated and can be used to segment the 3D necrotic regions for assessing the overall muscle damage. These results demonstrated the OPT’s capability for imaging microscopic fiber alternations in muscle research.
    Biomedical Optics Express 02/2015; 6(2):347. DOI:10.1364/BOE.6.000347 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies. (C) 2014 Optical Society of America
    Biomedical Optics; 04/2014


1 Download
Available from