Identification and validation of mouse sperm proteins correlated with epididymal maturation

Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6080, USA.
Proteomics (Impact Factor: 3.97). 10/2011; 11(20):4047-62. DOI: 10.1002/pmic.201100075
Source: PubMed

ABSTRACT Sperm need to mature in the epididymis to become capable of fertilization. To understand the molecular mechanisms of mouse sperm maturation, we conducted a proteomic analysis using saturation dye labeling to identify proteins of caput and cauda epididymal sperm that exhibited differences in amounts or positions on two-dimensional gels. Of eight caput epididymal sperm-differential proteins, three were molecular chaperones and three were structural proteins. Of nine cauda epididymal sperm-differential proteins, six were enzymes of energy metabolism. To validate these proteins as markers of epididymal maturation, immunoblotting and immunofluorescence analyses were performed. During epididymal transit, heat shock protein 2 was eliminated with the cytoplasmic droplet and smooth muscle γ-actin exhibited reduced fluorescence from the anterior acrosome while the signal intensity of aldolase A increased, especially in the principal piece. Besides these changes, we observed protein spots, such as glutathione S-transferase mu 5 and the E2 component of pyruvate dehydrogenase complex, shifting to more basic isoelectric points, suggesting post-translational changes such dephosphorylation occur during epididymal maturation. We conclude that most caput epididymal sperm-differential proteins contribute to the functional modification of sperm structures and that many cauda epididymal sperm-differential proteins are involved in ATP production that promotes sperm functions such as motility.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The highly complex and species-selective mechanism of fertilization is a central theme of developmental biology. Gametogenesis, sperm activation and egg-sperm recognition are fundamental biological processes, warranting detailed studies into the molecular composition of gametes. Biological mass spectrometry has been instrumental for the comprehensive itemizing of gamete proteomes. The protein constellation of sperm cells and its subcellular structures has been established for a variety of animal species. Spermatogenesis and the crucial activation of sperm cells as a prerequisite of successful fertilization and physiological adaptations to external stressors was investigated using proteomics, as well as the underlying mechanisms of male infertility with respect to proteome-wide alterations. This review outlines recent achievements of sperm proteomics and exemplifies the usefulness of gel-based surveys by outlining the comparative analysis of abnormal spermatozoa in globozoospermia. Besides label-free MS techniques and cell-based labeling methodology, high-resolution fluorescence 2D gel electrophoresis has been shown to be highly suitable as a proteomic biomarker discovery tool in sperm protein research. The appropriateness of novel protein markers for improving our understanding of normal spermatogenesis and sperm activation versus the molecular pathogenesis of male infertility will be discussed. New biomarker candidates might be useful to improve diagnostic, prognostic and therapeutic aspects of infertility. This article is protected by copyright. All rights reserved.
    Proteomics 06/2014; 15(4). DOI:10.1002/pmic.201400032 · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the mammalian spermatozoa transcends from the testis to the end of the epididymal tubule, the functionally incompetent spermatozoa acquires its fertilizing capability. Molecular changes in the spermatozoa at the posttesticular level concern qualitative and quantitative modifications of proteins along with their sugar moieties and membranous lipids mostly associated with motility, egg binding, and penetration processes. Proteomic studies have identified numerous sperm-specific proteins, and recent reports have provided a further understanding of their function with respect to male fertility. High-throughput techniques such as mass spectrometry have shown drastic potential for the identification and study of sperm proteins. In fact, compelling evidence has provided that proteins are critically important in cellular remodeling event and that aberrant expression is associated with pronounced defects in sperm function. This review highlights the posttesticular functional transformation in the epididymis and female reproductive tract with due emphasis on proteomics.
    Reproductive sciences (Thousand Oaks, Calif.) 11/2014; DOI:10.1177/1933719114558918 · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study was to screen the whole bull genome to identify markers and candidate genes underlying poor sperm motility. The analyzed data set originates from the Polish Holstein-Friesian bull population and consists of 41 case and 279 control bulls (selected from 1581 bulls). The most distinguishing trait of case group was very poor sperm motility (average 25.61%) when compared to control samples (average 72.95%). Each bull was genotyped using the Illumina BovineSNP50 BeadChip. Genome-wide association analysis was performed with the use of GoldenHelix SVS7 software. An additive model with a Cohran–Armitage test, Correlation/Trend adjusted by Bonferroni test were used to estimate the effect of Single Nucleotide Polymorphism (SNP) marker for poor sperm motility. Markers (n = 34) reached genome-wide significance. The most significant SNP were located on chromosome 24 (rs110876480), 5 (rs110827324 and rs29011704), and 1 (rs110596818), in the close vicinity of melanocortin 4 receptor (MC4R), PDZ domain containing ring finger 4 (PDZRN4) and ethanolamine kinase 1 (ETNK1), olfactory receptor 5K3-like (LOC785875) genes, respectively. For five other candidate genes located close to significant markers (in distance of ca. 1 Mb), namely alkaline phosphatase, liver/bone/kidney (ALPL), tripartite motif containing 36 (TRIM36), 3-hydroxyisobutyrate dehygrogenase (HIBADH), kelch-like 1 (KLHL1), protein kinase C, beta (PRKCB), their potential role in sperm motility was confirmed in the earlier studies. Five additional candidate genes, cystic fibrosis transmembrane conductance regulator (CFTR), insulin-like growth factor 1 receptor (IGF1R), steroid-5-alpha-reductase, alpha polypeptide 2 (SRD5A2), cation channel, sperm associated 1 (CATSPER1) calpain 1, (mu/I) large subunit (CAPN1) were suggested to be significantly associated with sperm motility or semen biochemistry. Results of the present study indicate there is a genetic complexity of poor sperm motility but also indicate there might be a causal polymorphism useful in marker-assisted selection. Identifying genomic regions associated with poor sperm motility may be very important for early recognition of a young sire as unsuitable for effective semen production in artificial insemination centers.
    Animal reproduction science 05/2014; 146(3-4). DOI:10.1016/j.anireprosci.2014.01.012 · 1.56 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014