Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLA-DRB gene expression in colorectal cancers

Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
Oncogene (Impact Factor: 8.46). 08/2011; 31(10):1242-53. DOI: 10.1038/onc.2011.320
Source: PubMed

ABSTRACT Absent in Melanoma 2 (AIM2) is a member of the HIN-200 family of hematopoietic, IFN-inducible, nuclear proteins, associated with both, infection defense and tumor pathology. Recently, AIM2 was found to act as a DNA sensor in innate immunity. In addition, we and others have previously demonstrated a high frequency of AIM2-alterations in microsatellite unstable (MSI-H) tumors. To further elucidate AIM2 function in colorectal tumors, we here addressed AIM2-responsive target genes by microarray based gene expression profiling of 22 244 human genes. A total of 111 transcripts were significantly upregulated, whereas 80 transcripts turned out to be significantly downregulated in HCT116 cells, constitutively expressing AIM2, compared with AIM2-negative cells. Among the upregulated genes that were validated by quantitative PCR and western blotting we recognized several interferon-stimulated genes (ISGs: IFIT1, IFIT2, IFIT3, IFI6, IRF7, ISG15, HLA-DRA, HLA-DRB, TLR3 and CIITA), as well as genes involved in intercellular adhesion and matrix remodeling. Expression of ISGs correlated with expression of AIM2 in 10 different IFN-γ treated colorectal cancer cell lines. Moreover, small interfering RNA-mediated knock-down of AIM2 resulted in reduced expression of HLA-DRA, HLA-DRB and CIITA in IFN-γ-treated cells. IFN-γ independent induction of HLA-DR genes and their encoded proteins was also demonstrated upon doxycyclin-regulated transient induction of AIM2. Luciferase reporter assays revealed induction of the HLA-DR promoter upon AIM2 transfection in different cell lines. STAT-signaling was not involved in IFN-γ independent induction of ISGs, arguing against participation of cytokines released in an autostimulating manner. Our data indicate that AIM2 mediates both IFN-γ dependent and independent induction of several ISGs, including genes encoding the major histocompatibility complex (MHC) class II antigens HLA-DR-α and -β. This suggests a novel role of the IFN/AIM2/ISG cascade likewise in cancer cells.

29 Reads
  • Source
    • "Further, the gene expression analysis using mRNA sequencing has provided an additional support to understand the effectiveness of genome sequencing as an effective tool in cancer researches [32]. The role of NGS technology is becoming the center of excellence in cancer research day by day, facilitating the candidate gene identification in various forms of cancers [33]. It also provides the possible way to design target based therapies by identifying the intercellular components to target the tumour promoting genes [34, 35]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: AKT1, a serine/threonine-protein kinase also known as AKT kinase, is involved in the regulation of various signalling downstream pathways including metabolism, cell proliferation, survival, growth, and angiogenesis. The AKT kinases pathway stands among the most important components of cell proliferation mechanism. Several approaches have been implemented to design an efficient drug molecule to target AKT kinases, although the promising results have not been confirmed. In this paper we have documented the detailed molecular insight of AKT kinase protein and proposed a probable doxorubicin based approach in inhibiting miR-21 based cancer cell proliferation. Moreover, the inhibition of miR-21 activation by raising the FOXO3A concentration seems promising in reducing miR-21 mediated cancer activation in cell. Furthermore, the use of next generation sequencing and computational drug design approaches will greatly assist in designing a potent drug molecule against the associated cancer cases.
    The Scientific World Journal 11/2013; 2013(5):756134. DOI:10.1155/2013/756134 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although human papillomavirus was identified as an aetiological factor in cervical cancer, the key human gene drivers of this disease remain unknown. Here we apply an unbiased approach integrating gene expression and chromosomal aberration data. In an independent group of patients, we reconstruct and validate a gene regulatory meta-network, and identify cell cycle and antiviral genes that constitute two major subnetworks upregulated in tumour samples. These genes are located within the same regions as chromosomal amplifications, most frequently on 3q. We propose a model in which selected chromosomal gains drive activation of antiviral genes contributing to episomal virus elimination, which synergizes with cell cycle dysregulation. These findings may help to explain the paradox of episomal human papillomavirus decline in women with invasive cancer who were previously unable to clear the virus.
    Nature Communications 05/2013; 4:1806. DOI:10.1038/ncomms2693 · 11.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Absent in melanoma (AIM2) was recently identified to act as a cytosolic DNA sensor in innate immunity. Considering the role of chronic inflammation in atherosclerosis, we hypothesized that AIM2 may act as a damage signal that is activated in response to cellular stress likewise in vascular cells of larger arteries. We thus addressed AIM2 expression in healthy arterial wall and in different vascular lesions. In addition, AIM2 expression was characterized in cultured human aortic endothelial cells (HAoECs), smooth muscle cells (HAoSMCs), and T/G-HA-vascular smooth muscle cells (VSMCs) in response to different stimuli. Carotid and aortic lesions from patients who underwent surgery and normal arterial specimens were analyzed by immunohistochemistry for AIM2 expression. Cultured HAoECs, HAoSMCs, and T/G-HA-VSMCs were stimulated in vitro with proinflammatory cytokines (tumor necrosis factor-α, interferon-γ) or poly(dA:dT) and analyzed for AIM2 transcript and protein expression. AIM2 was detected in ECs of the intima and vasa vasorum of normal carotid artery and aorta. Moreover, AIM2 was moderately expressed in VSMCs of normal media and intima layers, as well as in VSMCs of atherosclerotic lesions. Increased AIM2 expression was detected around the necrotic core of atherosclerotic carotid lesions and in the vasa vasorum neovasculature of aortic aneurysms. Subsequent in vitro analysis identified an endogenous AIM2 expression in cultured HAoECs, HAoSMCs, and T/G-HA-VSMCs that was markedly increased upon treatment of the cells with tumor necrosis factor-α, interferon-γ, or cytosolic DNA. ECs and VSMC are able to respond to inflammatory signals by upregulation of AIM2 expression, indicating a role of AIM2 in vascular pathogenesis.
    Journal of vascular surgery: official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 06/2013; 59(3). DOI:10.1016/j.jvs.2013.03.048 · 3.02 Impact Factor
Show more

Preview (2 Sources)

29 Reads
Available from