The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line.

BGI-Shenzhen, Shenzhen, People's Republic of China.
Nature Biotechnology (Impact Factor: 39.08). 07/2011; 29(8):735-41. DOI: 10.1038/nbt.1932
Source: PubMed

ABSTRACT Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns. Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The DHFR negative CHO DXB11 cell line (also known as DUX-B11 and DUKX) was historically the first CHO cell line to be used for large scale production of heterologous proteins and is still used for production of a number of complex proteins. Here we present the genomic sequence of the CHO DXB11 genome sequenced to a depth of 33x. Overall a significant genomic drift was seen favoring GC → AT point mutations in line with the chemical mutagenesis strategy used for generation of the cell line. The sequencing depth for each gene in the genome revealed distinct peaks at sequencing depths of 0x, 16x, 33x and 49x coverage corresponding to a copy number in the genome of 0, 1, 2 and 3 copies. This indicate that 17% of the genes are haploid revealing a large number of genes which can be knocked out with relative ease. This tendency of haploidy was furthermore shown to be present in eight additional analyzed CHO genomes (15-20% haploidy) but not in the genome of the Chinese hamster. The dhfr gene is confirmed to be haploid in CHO DXB11; transcriptionally active and the remaining allele contains a G410C point mutation causing a Thr137Arg missense mutation. We find ~2.5 million single nucleotide polymorphisms (SNP's), 44 gene deletions in the CHO DXB11 genome and 9357 SNP's, which interfere with the coding regions of 3458 genes. Copy number variations for nine CHO genomes were mapped to the chromosomes of the Chinese hamster showing unique signatures for each chromosome. The data indicate that chromosome one and four appear to be more stable over the course of the CHO evolution compared to the other chromosomes thus might presenting the most attractive landing platforms for knock-ins of heterologous genes. Our studies reveal an unexpected degree of haploidy in CHO DXB11 and CHO cells in general and highlight the chromosomal changes that have occurred among the CHO cell lines sequenced to date.
    BMC Genomics 12/2015; 16(1):1391. DOI:10.1186/s12864-015-1391-x · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for production of therapeutic proteins. However, development of recombinant CHO cell lines has been hampered by unstable and variable transgene expression caused by random integration. Here we demonstrate efficient targeted gene integration into site-specific loci in CHO cells using CRISPR/Cas9 genome editing system and compatible donor plasmid harboring a gene of interest (GOI) and short homology arms. This strategy has enabled precise insertion of a 3.7-kb gene expression cassette at defined loci in CHO cells following a simple drug-selection, resulting in homogeneous transgene expression. Taken together, the results displayed here can help pave the way for the targeting of GOI to specific loci in CHO cells, increasing the likelihood of generating isogenic cell lines with consistent protein production.
    Scientific Reports 02/2015; 5:8572. DOI:10.1038/srep08572 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are small non-coding RNAs that play a critical role in post-transcriptional control of gene expression. Recent publications of genomic sequencing data from the Chinese Hamster (CGR) and Chinese hamster ovary (CHO) cells provide new tools for the discovery of novel miRNAs in this important production system. Version 20 of the miRNA registry miRBase contains 307 mature miRNAs and 200 precursor sequences for CGR/CHO. We searched for evolutionary conserved miRNAs from miRBase v20 in recently published genomic data, derived from Chinese hamster and CHO cells, to further extend the list of known miRNAs. With our approach we could identify several hundred miRNA sequences in the genome. For several of these, the expression in CHO cells could be verified from multiple next-generation sequencing experiments. In addition, several hundred unexpressed miRNAs are awaiting further confirmation by testing for their transcription in different Chinese hamster tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Biotechnology and Bioengineering 02/2015; DOI:10.1002/bit.25539 · 4.16 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014