Article

Norepinephrine Infusion into Nucleus Basalis Elicits Microarousal in Desflurane-anesthetized Rats

Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
Anesthesiology (Impact Factor: 6.17). 07/2011; 115(4):733-42. DOI: 10.1097/ALN.0b013e31822c5ee1
Source: PubMed

ABSTRACT The nucleus basalis of Meynert of the basal forebrain has been implicated in the regulation of the state of consciousness across normal sleep-wake cycles. Its role in the modulation of general anesthesia was investigated.
Rats were chronically implanted with bilateral infusion cannulae in the nucleus basalis of Meynert and epidural electrodes to record the electroencephalogram in frontal and visual cortices. Animals were anesthetized with desflurane at a concentration required for the loss of righting reflex (4.6 ± 0.5%). Norepinephrine (17.8 nmol) or artificial cerebrospinal fluid was infused at 0.2 μl/min (1 μl total). Behavioral response to infusion was measured by scoring the orofacial, limb, and head movements, and postural changes.
Behavioral responses were higher after norepinephrine (2.1 ± 1) than artificial cerebrospinal fluid (0.63 ± 0.8) infusion (P < 0.01, Student t test). Responses were brief (1-2 min), repetitive, and more frequent after norepinephrine infusion (P < 0.0001, chi-square test). Electroencephalogram delta power decreased after norepinephrine in frontal (70 ± 7%) but not in visual cortex (P < 0.05, Student t test). Simultaneously, electroencephalogram cross-approximate entropy between frontal and visual cortices increased from 3.17 ± 0.56 to 3.85 ± 0.29 after norepinephrine infusion (P < 0.01, Student t test). Behavioral activation was predictable by the decrease in frontal delta power (logistic regression, P < 0.05).
Norepinephrine infusion into the nucleus basalis of Meynert can modulate anesthetic depth presumably by ascending activation of the cortex. The transient nature of the responses suggests a similarity with microarousals normally observed during natural sleep, and may imply a mechanism for transient awareness under light anesthesia.

Full-text

Available from: Siveshigan Pillay, Jan 05, 2014
0 Followers
 · 
197 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS) via deep brain stimulation may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia associated with loss of consciousness leads to cortical arousal and specific changes in blood-oxygenation-level dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural EEG before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ-and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial n. of thalamus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.
    08/2014; DOI:10.1089/brain.2014.0254
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: States of consciousness have been associated with information integration in the brain as modulated by anesthesia and the ascending arousal system. The present study was designed to test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) can augment information integration in the cerebral cortex of anesthetized rats. Extracellular unit activity and local field potentials were recorded in freely moving animals from parietal association (PtA) and secondary visual (V2) cortices via chronically implanted microwire arrays at three levels of anesthesia produced by desflurane: 3.5, 4.5, and 6.0% (where 4.5% corresponds to that critical for the loss of consciousness). Information integration was characterized by integration (multiinformation) and interaction entropy, estimated from the statistical distribution of coincident spike patterns. PnO stimulation elicited electrocortical activation as indicated by the reductions in δ- and θ-band powers at the intermediate level of anesthesia. PnO stimulation augmented integration from 1.13 ± 0.03 to 6.12 ± 1.98 × 10(3) bits and interaction entropy from 0.44 ± 0.11 to 2.18 ± 0.72 × 10(3) bits; these changes were most consistent in the PtA at all desflurane concentrations. Stimulation of the retina with discrete light flashes after PnO stimulation elicited an additional 166 ± 25 and 92 ± 12% increase in interaction entropy in V2 during light and intermediate levels. The results suggest that the PnO may modulate spontaneous ongoing and sensory stimulus-related cortical information integration under anesthesia.
    Frontiers in Integrative Neuroscience 02/2014; 8:8. DOI:10.3389/fnint.2014.00008
  • [Show abstract] [Hide abstract]
    ABSTRACT: This document reviews the literature on local brain manipulation of general anesthesia in animals, focusing on behavioral and electrographic effects related to hypnosis or loss of consciousness. Local inactivation or lesion of wake-active areas, such as locus coeruleus, dorsal raphe, pedunculopontine tegmental nucleus, perifornical area, tuberomammillary nucleus, ventral tegmental area and basal forebrain, enhanced general anesthesia. Anesthesia enhancement was shown as a delayed emergence (recovery of righting reflex) from anesthesia or a decrease in the minimal alveolar concentration that induced loss of righting. Local activation of various wake-active areas, including pontis oralis and centromedial thalamus, promoted behavioral or electrographic arousal during maintained anesthesia and facilitated emergence. Lesion of the sleep-active ventrolateral preoptic area resulted in increased wakefulness and decreased isoflurane sensitivity, but only for 6 days after lesion. Inactivation of any structure within limbic circuits involving the medial septum, hippocampus, nucleus accumbens, ventral pallidum, and ventral tegmental area, amygdala, entorhinal and piriform cortex delayed emergence from anesthesia, and often reduced anesthetic-induced behavioral excitation. In summary, the concept that anesthesia works on the sleep-wake system has received strong support from studies that inactivated/lesioned or activated wake-active areas, and weak support from studies that lesioned sleep-active areas. In addition to the conventional wake-sleep areas, limbic structures such as the medial septum, hippocampus and prefrontal cortex are also involved in the behavioral response to general anesthesia. We suggest that hypnosis during general anesthesia may result from disrupting the wake-active neuronal activities in multiple areas and suppressing an atropine-resistant cortical activation associated with movements.
    Progress in Neurobiology 11/2014; 122. DOI:10.1016/j.pneurobio.2014.08.001 · 10.30 Impact Factor