Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone

Section of Biomechanics, Bone and Joint Center, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
Bone (Impact Factor: 4.46). 07/2011; 49(4):886-94. DOI: 10.1016/j.bone.2011.07.006
Source: PubMed

ABSTRACT Cancellous bone microstructure is an important determinant of the mechanical integrity of vertebrae. The numerous microstructural parameters that have been studied extensively are generally represented as a single value obtained as an average over a sample. The range of the intra-sample variability of cancellous microstructure and its effect on the mechanical properties of bone are less well-understood. The objectives of this study were to investigate the extent to which human cancellous bone microstructure within a vertebra i) is related to bone modulus and stress distribution properties and ii) changes along with age, gender and locations thoracic 12 (T12) vs lumbar 1 (L1). Vertebrae were collected from 15 male (66±15 years) and 25 female (54±16 years) cadavers. Three dimensional finite element models were constructed using microcomputed tomography images of cylindrical specimens. Linear finite element models were used to estimate apparent modulus and stress in the cylinders during uniaxial compression. The intra-specimen mean, standard deviation (SD) and coefficient of variation (CV) of microstructural variables were calculated. Mixed model statistical analysis of the results demonstrated that increases in the intra-specimen variability of the microstructure contribute to increases in the variability of trabecular stresses and decreases in bone stiffness. These effects were independent from the contribution from intra-specimen average of the microstructure. Further, the effects of microstructural variability on bone stiffness and stress variability were not accounted for by connectivity and anisotropy. Microstructural variability properties (SD, CV) generally increased with age, were greater in females than in males and in T12 than in L1. Significant interactions were found between age, gender, vertebra and race. These interactions suggest that microstructural variability properties varied with age differently between genders, races and vertebral levels. The current results collectively demonstrate that microstructural variability has a significant effect on mechanical properties and tissue stress of human vertebral cancellous bone. Considering microstructural variability could improve the understanding of bone fragility and improve assessment of vertebral fracture risk.

Download full-text


Available from: David Fyhrie, Mar 28, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Digital tomosynthesis (DTS) provides slice images of an object using conventional radiographic methods with high in-plane resolution. The objective of this study was to explore the potential of DTS for describing microstructural, stiffness and stress distribution properties of vertebral cancellous bone. Forty vertebrae (T6, T8, T11, and L3) from 10 cadavers (63-90 years) were scanned using microCT and DTS. Anisotropy (μCT.DA), and the specimen-average and standard deviation of trabecular bone volume fraction (BV/TV), thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp) were obtained using stereology. Apparent modulus (EFEM), and the magnitude (VMExp/σapp) and variability (VMCV) of trabecular stresses were calculated using microCT-based finite element modeling. Mean intercept length, line fraction deviation and fractal parameters were obtained from coronal DTS slices, then correlated with stereological and finite element parameters using linear regression models. Twenty-one DTS parameters (out of 27) correlated to BV/TV, Tb.Th, Tb.N, Tb.Sp and/or μCT.DA (p<0.0001-p<0.05). DTS parameters increased the explained variability in EFEM and VMCV (by 9-11% and 13-19%, respectively; p<0.0001-p<0.04) over that explained by BV/TV. In conclusion, DTS has potential for quantitative assessment of cancellous bone and may be used as a modality complementary to those measuring bone mass for assessing spinal fracture risk. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
    Medical Engineering & Physics 12/2014; 37(1). DOI:10.1016/j.medengphy.2014.11.005 · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies show that in vivo assessment of fracture risk can be achieved by identifying the relationships between microarchitecture description from clinical imaging and mechanical properties. This study demonstrates that results obtained at low strain rates can be extrapolated to loadings with an order of magnitude similar to trauma such as car crashes. Cancellous bovine bone specimens were compressed under dynamic loadings (with and without confinement) and the mechanical response properties were identified, such as Young׳s modulus, ultimate stress, ultimate strain, and ultimate strain energy. Specimens were previously scanned with pQCT, and architectural and structural microstructure properties were identified, such as parameters of geometry, topology, connectivity and anisotropy. The usefulness of micro-architecture description studied was in agreement with statistics laws. Finally, the differences between dynamic confined and non-confined tests were assessed by the bone marrow influence and the cancellous bone response to different boundary conditions. Results indicate that architectural parameters, such as the bone volume fraction (BV/TV), are as strong determinants of mechanical response parameters as ultimate stress at high strain rates (p-value<0.001). This study reveals that cancellous bone response at high strain rates, under different boundary conditions, can be predicted from the architectural parameters, and that these relations with mechanical properties can be used to make fracture risk prediction at a determined magnitude. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Journal of Biomechanics 02/2015; 48(3):498–503. DOI:10.1016/j.jbiomech.2014.12.002 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Homoscedasticity (constant variance over axes or among statistical factors) is an integral assumption of most statistical analyses. However, a number of empirical studies in model organisms and humans demonstrate significant differences in residual variance (that component of phenotype unexplained by known factors) or intra-individual variation among genotypes. Our work suggests that renal traits may be particularly susceptible to randomization by genetic and non-genetic factors, including endogenous variables like age and weight. Methods: We tested associ-ations between age, weight and intra-individual variation in urinary calcium, citrate, chloride, creatinine, potassium, magnesium, sodium, ammonium, oxalate, phosphorus, sulfate, uric acid and urea nitrogen in 9,024 male and 6,758 female kidney stone patients. Coefficients of variation (CVs) were calculated for each individual for each solute from paired 24-hour urines. Analysis of CVs was corrected for inter-measurement collection variance in creatinine and urine volume. CVs for sodium and urea nitrogen were included to correct for dietary salt and protein. Results: Age was positively associated with individual CVs for calcium and negatively associated with CVs for potassium, ammonium and phosphorus (pFDR < 0.01). Weight was associated with CVs for creatinine, magnesium and uric acid, and negatively associated with CVs for calcium, potassium and oxalate (pFDR < 0.05). Conclusion: Intra-individual variation changes over age and weight axes for numerous urinary solutes. Changing residual variance over age and weight could cause bias in the detection or estimation of genetic or environmental effects. New methodologies may need to account for such residual unpredictability, especially in diverse collections.
    Nephron Physiology 01/2012; 122(1-2):13-8. DOI:10.1159/000346148 · 1.55 Impact Factor