Article

Prosocial effects of oxytocin and clinical evidence for its therapeutic potential

Department of Psychiatry, University of Bonn, 53105 Bonn, Germany.
Frontiers in Neuroendocrinology (Impact Factor: 7.58). 07/2011; 32(4):426-50. DOI: 10.1016/j.yfrne.2011.07.001
Source: PubMed

ABSTRACT There has been unprecedented interest in the prosocial effects of the neuropeptide oxytocin in humans over the last decade. A range of studies has demonstrated correlations between basal oxytocin levels and the strength of social and bonding behaviors both in healthy individuals and in those suffering from psychiatric disorders. Mounting evidence suggests associations between polymorphisms in the oxytocin receptor gene and prosocial behaviors and there may also be important epigenetic effects. Many studies have now reported a plethora of prosocial effects of intranasal application of oxytocin, including the domains of trust, generosity, socially reinforced learning, and emotional empathy. The main focus of this review will be to summarize human preclinical work and particularly the rapidly growing number of clinical studies which have identified important links between oxytocin and a wide range of psychiatric disorders, and have now started to directly assess its therapeutic potential.

1 Follower
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse models of neuropsychiatric diseases provide a platform for mechanistic understanding and development of new therapies. We previously demonstrated that knockout of the mouse homolog of CNTNAP2 (contactin-associated protein-like 2), in which mutations cause cortical dysplasia and focal epilepsy (CDFE) syndrome, displays many features that parallel those of the human disorder. Because CDFE has high penetrance for autism spectrum disorder (ASD), we performed an in vivo screen for drugs that ameliorate abnormal social behavior in Cntnap2 mutant mice and found that acute administration of the neuropeptide oxytocin improved social deficits. We found a decrease in the number of oxytocin immunoreactive neurons in the paraventricular nucleus (PVN) of the hypothalamus in mutant mice and an overall decrease in brain oxytocin levels. Administration of a selective melanocortin receptor 4 agonist, which causes endogenous oxytocin release, also acutely rescued the social deficits, an effect blocked by an oxytocin antagonist. We confirmed that oxytocin neurons mediated the behavioral improvement by activating endogenous oxytocin neurons in the paraventricular hypothalamus with Designer Receptors Exclusively Activated by Designer Drugs (DREADD). Last, we showed that chronic early postnatal treatment with oxytocin led to more lasting behavioral recovery and restored oxytocin immunoreactivity in the PVN. These data demonstrate dysregulation of the oxytocin system in Cntnap2 knockout mice and suggest that there may be critical developmental windows for optimal treatment to rectify this deficit. Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 01/2015; 7(271):271ra8. DOI:10.1126/scitranslmed.3010257 · 14.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxytocin (OT), the main neuropeptide of sociality, is expressed in neurons exclusively localized in the hypothalamus. During the last decade, a plethora of neuroendocrine, metabolic, autonomic and behavioral effects of OT has been reported. In the urgency to find treatments to syndromes as invalidating as autism, many clinical trials have been launched in which OT is administered to patients, including adolescents and children. However, the impact of OT on the developing brain and in particular on the embryonic and early postnatal maturation of OT neurons, has been only poorly investigated. In the present review we summarize available (although limited) literature on general features of ontogenetic transformation of the OT system, including determination, migration and differentiation of OT neurons. Next, we discuss trajectories of OT receptors (OTR) in the perinatal period. Furthermore, we provide evidence that early alterations, from birth, in the central OT system lead to severe neurodevelopmental diseases such as feeding deficit in infancy and severe defects in social behavior in adulthood, as described in Prader-Willi syndrome (PWS). Our review intends to propose a hypothesis about developmental dynamics of central OT pathways, which are essential for survival right after birth and for the acquisition of social skills later on. A better understanding of the embryonic and early postnatal maturation of the OT system may lead to better OT-based treatments in PWS or autism.
    Frontiers in Neuroanatomy 02/2015; 8. DOI:10.3389/fnana.2014.00164 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is associated with well-recognized alterations in brain function, some of which are reflected in cognitive decline. While less appreciated, there is also considerable evidence of socioemotional changes later in life, some of which are beneficial. In this review, we examine age-related changes and individual differences in four neuroendocrine systems-cortisol, estrogen, testosterone, and oxytocin-as "difference makers" in these processes. This suite of interrelated hormonal systems actively coordinates regulatory processes in brain and behavior throughout development, and their level and function fluctuate during the aging process. Despite these facts, their specific impact in cognitive and socioemotional aging has received relatively limited study. It is known that chronically elevated levels of the stress hormone cortisol exert neurotoxic effects on the aging brain with negative impacts on cognition and socioemotional functioning. In contrast, the sex hormones estrogen and testosterone appear to have neuroprotective effects in cognitive aging, but may decrease prosociality. Higher levels of the neuropeptide oxytocin benefit socioemotional functioning, but little is known about the effects of oxytocin on cognition or about age-related changes in the oxytocin system. In this paper, we will review the role of these hormones in the context of cognitive and socioemotional aging. In particular, we address the aforementioned gap in the literature by: (1) examining both singular actions and interrelations of these four hormonal systems; (2) exploring their correlations and causal relationships with aspects of cognitive and socioemotional aging; and (3) considering multilevel internal and external influences on these hormone systems within the framework of explanatory pluralism. We conclude with a discussion of promising future research directions.
    Frontiers in Psychology 01/2014; 5:1595. DOI:10.3389/fpsyg.2014.01595 · 2.80 Impact Factor

Preview

Download
2 Downloads