Article

Novel optineurin mutations in sporadic amyotrophic lateral sclerosis patients.

Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands.
Neurobiology of aging (Impact Factor: 5.94). 07/2011; 33(5):1016.e1-7. DOI: 10.1016/j.neurobiolaging.2011.05.019
Source: PubMed

ABSTRACT Optineurin (OPTN) mutations have been reported in a cohort of Japanese patients with familial (FALS) and sporadic (SALS) amyotrophic lateral sclerosis. In Caucasian patients, OPTN mutations have been identified in FALS patients, but were not detected in a cohort of 95 SALS patients. Moreover, single nucleotide polymorphisms (SNPs) in OPTN that could raise amyotrophic lateral sclerosis (ALS) susceptibility have not been investigated. Therefore, we screened a large Dutch cohort of 1191 patients with SALS, 94 patients with FALS, and 1415 control subjects for mutations and SNPs in OPTN. We identified 1 novel nonsense mutation (Q165X) and 1 unreported missense mutation (Q454E) in individual SALS patients. These patients demonstrated rapid disease progression with an average survival of 24.5 months. No heterozygous or homozygous OPTN mutations were identified in our cohort of FALS patients. SNP analysis did not reveal significant differences between ALS patients and control subjects. Therefore, variations in OPTN appear to be a rare cause of rapidly progressive SALS in the Netherlands.

0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in Optineurin have been associated with ALS, glaucoma, and Paget's disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work.
    PLoS ONE 01/2014; 9(10):e109922. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the gene encoding Profilin 1 (PFN1) have recently been shown to cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. We sequenced the PFN1 gene in a cohort of ALS patients (n=485) and detected 2 novel variants (A20T and Q139L) as well as 4 cases with the previously identified E117G rare variant (∼1.2%). A case-control meta-analysis of all published E117G ALS+/-FTD cases including those identified in this report was significant p=0.001, OR=3.26 (95% CI 1.6-6.8), demonstrating this variant to be a susceptibility allele. Post-mortem tissue from available patients displayed classic TDP-43 pathology. In both transient transfections and in fibroblasts from a patient with the A20T change, we showed that this novel PFN1 mutation causes protein aggregation and the formation of insoluble high molecular weight species which is a hallmark of ALS pathology. Our findings show that PFN1 is a rare cause of ALS and adds further weight to the underlying genetic heterogeneity of this disease.
    Neurobiology of Aging. 10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive degeneration of motor neurons, ultimately leading to paralysis and death. Approximately 10% of ALS cases are familial, with the remaining 90% of cases being sporadic. Genetic studies in familial cases of ALS have been extremely informative in determining the causative mutations behind ALS, especially as the same mutations identified in familial ALS can also cause sporadic disease. However, the cause of ALS in approximately 30% of familial cases and in the majority of sporadic cases remains unknown. Sporadic ALS cases represent an underutilized resource for genetic information about ALS; therefore, we undertook a targeted sequencing approach of 169 known and candidate ALS disease genes in 242 sporadic ALS cases and 129 matched controls to try to identify novel variants linked to ALS. We found a significant enrichment in novel and rare variants in cases versus controls, indicating that we are likely identifying disease associated mutations. This study highlights the utility of next generation sequencing techniques combined with functional studies and rare variant analysis tools to provide insight into the genetic etiology of a heterogeneous sporadic disease.
    PLoS Genetics 10/2014; 10(10):e1004704. · 8.52 Impact Factor