Article

Novel optineurin mutations in sporadic amyotrophic lateral sclerosis patients.

Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands.
Neurobiology of aging (Impact Factor: 5.94). 07/2011; 33(5):1016.e1-7. DOI: 10.1016/j.neurobiolaging.2011.05.019
Source: PubMed

ABSTRACT Optineurin (OPTN) mutations have been reported in a cohort of Japanese patients with familial (FALS) and sporadic (SALS) amyotrophic lateral sclerosis. In Caucasian patients, OPTN mutations have been identified in FALS patients, but were not detected in a cohort of 95 SALS patients. Moreover, single nucleotide polymorphisms (SNPs) in OPTN that could raise amyotrophic lateral sclerosis (ALS) susceptibility have not been investigated. Therefore, we screened a large Dutch cohort of 1191 patients with SALS, 94 patients with FALS, and 1415 control subjects for mutations and SNPs in OPTN. We identified 1 novel nonsense mutation (Q165X) and 1 unreported missense mutation (Q454E) in individual SALS patients. These patients demonstrated rapid disease progression with an average survival of 24.5 months. No heterozygous or homozygous OPTN mutations were identified in our cohort of FALS patients. SNP analysis did not reveal significant differences between ALS patients and control subjects. Therefore, variations in OPTN appear to be a rare cause of rapidly progressive SALS in the Netherlands.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia-neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS.
    Cellular and Molecular Life Sciences CMLS 08/2013; · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our understanding of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, is expanding rapidly as its genetic causes are uncovered. The pace of new gene discovery over the last 5 years has accelerated, providing new insights into the pathogenesis of disease and highlighting biological pathways as targets for therapeutic development. This article reviews our current understanding of the heritability of ALS and provides an overview of each of the major ALS genes, highlighting their phenotypic characteristics and frequencies as a guide for clinicians evaluating patients with ALS.
    Neurologic Clinics 11/2013; 31(4):929-50. · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the aggregation of ubiquitinated proteins in affected motor neurons. Recent studies have identified several new molecular constituents of ALS-linked cellular aggregates, including FUS, TDP-43, OPTN, UBQLN2 and the translational product of intronic repeats in the gene C9ORF72. Mutations in the genes encoding these proteins are found in a subgroup of ALS patients and segregate with disease in familial cases, indicating a causal relationship with disease pathogenesis. Furthermore, these proteins are often detected in aggregates of non-mutation carriers and those observed in other neurodegenerative disorders, supporting a widespread role in neuronal degeneration. The molecular characteristics and distribution of different types of protein aggregates in ALS can be linked to specific genetic alterations and shows a remarkable overlap hinting at a convergence of underlying cellular processes and pathological effects. Thus far, self-aggregating properties of prion-like domains, altered RNA granule formation and dysfunction of the protein quality control system have been suggested to contribute to protein aggregation in ALS. The precise pathological effects of protein aggregation remain largely unknown, but experimental evidence hints at both gain- and loss-of-function mechanisms. Here, we discuss recent advances in our understanding of the molecular make-up, formation, and mechanism-of-action of protein aggregates in ALS. Further insight into protein aggregation will not only deepen our understanding of ALS pathogenesis but also may provide novel avenues for therapeutic intervention.
    Acta Neuropathologica 05/2013; · 9.73 Impact Factor