Development of an interferon-gamma ELISPOT assay to detect human T cell responses to HSV-2.

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Vaccine (Impact Factor: 3.49). 07/2011; 29(40):7058-66. DOI: 10.1016/j.vaccine.2011.07.028
Source: PubMed

ABSTRACT The need for an HSV-2 vaccine is great considering the increasing prevalence of HSV-2 despite the widespread use of antiviral drugs. Human clinical trials of HSV-2 vaccines that elicit neutralizing antibodies have proven to be only partially effective suggesting that induction of effective T cell responses to HSV-2 is also a critical component to an efficacious vaccine. A sensitive and specific assay to measure HSV-specific T cell responses is a necessary part of vaccine development and thus we undertook the development of an interferon-γ (IFN-γ) ELISPOT assay to measure T cell responses to HSV-2.
PBMC from HSV-seronegative (HSVneg) (n=35), HSV-1-seropositive (HSV-1+/2-) (n=20) and HSV-2-seropositive (HSV-2+) subjects (n=26) were screened by IFN-γ ELISPOT for T cell responses using 34 peptide pools representing 16 HSV-2 proteins including mostly virion and immediate-early (IE) proteins.
Overall, 85% of HSV-2+ subjects had a positive response to the HSV-2 peptide pools and on average, HSV-2+ subjects responded to 3 peptide pools (range 1-10). The most frequent responses were to gD-2, UL39, UL46, ICP0, UL49, gB-2, and ICP4. In contrast, only 2 of 35 (6%) HSVneg subjects had detectable T cell responses and in both cases, responses were of low magnitude relative to responses in HSV-2+ subjects and were directed at a single peptide pool. The response rate to the HSV-2 peptide pools in HSV-1+/2- subjects was 40% suggesting that the HSV-2 peptide pools contain a significant number of type-common T cell epitopes. The IFN-γ ELISPOT assay detected CD4 and CD8 T cells directed at HSV-2 peptides as confirmed by intracellular cytokine staining and flow cytometry.
We have developed a quantitative IFN-γ ELISPOT assay that detects both CD4 and CD8 T cells to HSV-2 peptides. This assay does not require large quantities of PBMC to generate dendritic cells for T cell stimulation, making it an ideal assay for monitoring the immunogenicity of candidate HSV-2 vaccines designed to elicit T cell responses to HSV-2 specific epitopes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular cytokine staining is a flow cytometric technique consisting of a short term culture of stimulated cytokine-producing cells in the presence of a protein secretion inhibitor, followed by fixation, permeabilization and staining of intracellular cytokines and cell markers (surface or cytoplasmic) with fluorescent antibodies. Up to 18 different colors can be detected by modern flow cytometers, making it the only immunological technique allowing simultaneous determination of antigen-specific T cell function and phenotype. In addition, cell proliferation and viability can be also measured. For this reason, it is probably the most popular method to measure antigenicity during vaccine trials and in the study of infectious diseases, along with ELISPOT. In this review, we will summarize its features, provide the protocol used by most laboratories and review its most recent applications.
    Methods 04/2013; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infectious laryngotracheitis (ILT) is an upper respiratory tract disease in chickens caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. Despite the extensive use of attenuated, and more recently recombinant, vaccines for the control of this disease, ILT continues to affect the intensive poultry industries worldwide. Innate and cell-mediated, rather than humoral immune responses, have been identified as responsible for protection against disease. This review examines the current understandings in innate and adaptive immune responses towards ILTV, as well as the role of ILTV glycoprotein G in modulating the host immune response towards infection. Protective immunity induced by ILT vaccines is also examined. The increasing availability of tools and reagents for the characterisation of avian innate and cell-mediated immune responses are expected to further our understanding of immunity against ILTV and drive the development of new generation vaccines towards enhanced control of this disease.
    Developmental and comparative immunology 04/2013; · 3.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) infections have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a billion individuals worldwide. HSV-1 infections are predominant than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries, their development has been difficult. During the most recent National Institute of Health (NIH) workshop titled “Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities”, basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One “common denominator” among previously failed clinical herpes vaccine trials is that they either used a whole virus or a whole viral protein, which contain both “pathogenic symptomatic” and “protective asymptomatic” antigens and epitopes, respectively. In this report, we continue to advocate developing “asymptomatic” epitope-based vaccine strategies that selectively incorporates “protective asymptomatic” epitopes which: (i) are exclusively recognized by effector memory CD4+ and CD8+ T cells (TEM cells) from “naturally” protected seropositive asymptomatic individuals; and (ii) protect human leukocyte antigen (HLA) transgenic animal models of ocular and genital herpes. We review the role of animal models in herpes vaccine development and discuss its current status, challenges, and prospects.
    Vaccine 11/2014; · 3.49 Impact Factor


Available from