Article

Differential neural responses to food images in women with bulimia versus anorexia nervosa.

Department of Neuroscience, Uppsala University, Uppsala, Sweden.
PLoS ONE (Impact Factor: 3.73). 01/2011; 6(7):e22259. DOI: 10.1371/journal.pone.0022259
Source: PubMed

ABSTRACT Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known.
We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI).
In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area.
Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.

0 Bookmarks
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sexually-dimorphic behavioral and biological aspects of human eating have been described. Using psychophysiological interactions (PPI) analysis, we investigated sex-based differences in functional connectivity with a key emotion-processing region (amygdala, AMG) and a key reward-processing area (ventral striatum, VS) in response to high vs. low energy-dense (ED) food images using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in obese persons in fasted and fed states. When fed, in response to high vs. low-ED food cues, obese men (vs. women) had greater functional connectivity with AMG in right subgenual anterior cingulate, whereas obese women had greater functional connectivity with AMG in left angular gyrus and right primary motor areas. In addition, when fed, AMG functional connectivity with pre/post-central gyrus was more associated with BMI in women (vs. men). When fasted, obese men (vs. women) had greater functional connectivity with AMG in bilateral supplementary frontal and primary motor areas, left precuneus, and right cuneus, whereas obese women had greater functional connectivity with AMG in left inferior frontal gyrus, right thalamus, and dorsomedial prefrontal cortex. When fed, greater functional connectivity with VS was observed in men in bilateral supplementary and primary motor areas, left postcentral gyrus, and left precuneus. These sex-based differences in functional connectivity in response to visual food cues may help partly explain differential eating behavior, pathology prevalence, and outcomes in men and women.
    NeuroImage 05/2014; · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroimaging studies investigating the neural profile of anorexia nervosa (AN) have revealed a predominant imbalance between the reward and inhibition systems of the brain, which are also hallmark characteristics of the disorder. However, little is known whether these changes can also be determined independent of task condition, using resting-state functional magnetic resonance imaging, in currently ill AN patients. Therefore the aim of our study was to investigate resting-state connectivity in AN patients (n = 12) compared to healthy athlete (n = 12) and non-athlete (n = 14) controls. For this purpose, we used degree centrality to investigate functional connectivity of the whole-brain network and then Granger causality to analyze effective connectivity (EC), to understand directional aspects of potential alterations. We were able to show that the bilateral inferior frontal gyrus (IFG) is a region of special functional importance within the whole-brain network, in AN patients, revealing reduced functional connectivity compared to both healthy control groups. Furthermore, we found decreased EC from the right IFG to the midcingulum and increased EC from the bilateral orbitofrontal gyrus to the right IFG. For the left IFG, we only observed increased EC from the bilateral insula to the left IFG. These results suggest that AN patients have reduced connectivity within the cognitive control system of the brain and increased connectivity within regions important for salience processing. Due to its fundamental role in inhibitory behavior, including motor response, altered integrity of the inferior frontal cortex could contribute to hyperactivity in AN.
    NeuroImage: Clinical. 01/2014; 4:615–622.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anorexia nervosa (AN), obsessive-compulsive disorder (OCD), and obsessive-compulsive personality disorder (OCPD) are often co-morbid; however, the aetiology of such co-morbidity has not been well investigated. This study examined brain activation in women with AN and in healthy control (HC) women during the provocation of symmetry/ordering-related anxiety. During provocation, patients with AN showed more anxiety compared to HCs, which was correlated with the severity of symmetry/ordering symptoms. Activation in the right parietal lobe and right prefrontal cortex (rPFC) in response to provocation was reduced in the AN group compared with the HC group. The reduced right parietal activation observed in the AN group is consistent with parietal lobe involvement in visuospatial cognition and with studies of OCD reporting an association between structural abnormalities in this region and the severity of 'ordering' symptoms. Reduced rPFC activation in response to symmetry/ordering provocation has similarities with some, but not all, data collected from patients with AN who were exposed to images of food and bodies. Furthermore, the combination of data from the AN and HC groups showed that rPFC activation during symptom provocation was inversely correlated with the severity of symmetry/ordering symptoms. These data suggest that individuals with AN have a diminished ability to cognitively deal with illness-associated symptoms of provocation. Furthermore, our data also suggest that symptom provocation can progressively overload attempts by the rPFC to exert cognitive control. These findings are discussed in the context of the current neurobiological models of AN.
    PLoS ONE 01/2014; 9(5):e97998. · 3.73 Impact Factor

Full-text (2 Sources)

View
43 Downloads
Available from
May 15, 2014