Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography.

Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
Journal of the American College of Cardiology (Impact Factor: 14.09). 08/2011; 58(6):603-14. DOI: 10.1016/j.jacc.2011.03.044
Source: PubMed

ABSTRACT This study investigated the regulation of glucose uptake in cells that participate in atherogenesis by stimuli relevant to this process, to gain mechanistic insight into the origin of the (18)fluorine-labeled 2-deoxy-D-glucose (FdG) uptake signals observed clinically.
Patient studies suggest that positron emission tomography (PET) using FdG can detect "active" atherosclerotic plaques, yet the mechanism giving rise to FdG signals remains unknown.
We exposed cells to conditions thought to operate in atheroma and determined rates of glucose uptake.
Hypoxia, but not pro-inflammatory cytokines, potently stimulated glucose uptake in human macrophages and foam cells. Statins attenuated this process in vitro, suggesting that these agents have a direct effect on human macrophages. Immunohistochemical study of human plaques revealed abundant expression of proteins regulating glucose utilization, predominantly in macrophage-rich regions of the plaques-regions previously proved hypoxic. Smooth-muscle cells and endothelial cells markedly increased rates of glucose uptake when exposed to pro-inflammatory cytokines.
Glucose uptake and, probably, FdG uptake signals in atheroma may reflect hypoxia-stimulated macrophages rather than mere inflammatory burden. Cytokine-activated smooth-muscle cells also may contribute to the FdG signal.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the role of [18F]-fluorodeoxyglucose positron emission tomography/computer tomography [18F-FDG PET/CT] comparing target background ratio (TBR) and standardized uptake value (SUV) with the histopathological inflammatory status of the carotid plaques. Vulnerable carotid plaques are the primary cause of acute cerebrovascular events. 18F-FDG PET/CT represents a morpho-functional technique able to identify the highly inflamed and most vulnerable carotid plaques. Several literature studies experimented this new method to identify vascular inflammation, but few have effectively compared PET/CT results with plaque histological data and no studies had directly compared TBR to SUV. Thirty-two consecutive patients (20 men and 12 women, mean age 74 ± 8 years) undergoing carotid endarterectomy were enrolled and studied with carotid 18F-FDG PET/CT. Maximum and mean SUV and TBR were used to quantify 18F-FDG uptake while surgical specimens were analyzed by optical microscopy to identify inflamed carotid plaques, with evaluation of macrophages infiltration by mean of immunohistochemistry. On the basis of the presence of inflammation at the histological analysis, we divided population in two groups: group A (n = 12) patients with inflamed carotid plaques and group B (n = 20) patients with non-inflamed ones, then crossed and evaluated the histological data with 18F-FDG PET/CT findings. SUV max and SUV mean values resulted higher in group A (respectively, 2.14 ± 0.77 and 1.99 ± 0.68) than in group B (respectively, 1.79 ± 0.37 and 1.64 ± 0.34) without reaching a statistical significance (p = ns). TBR max and TBR mean values resulted higher in group A (respectively, 1.42 ± 0.32 and 1.34 ± 0.26) than in group B (respectively, 1.16 ± 0.19 and 1.03 ± 0.20) with a statistically significant differences between the two groups and carotid inflammation (respectively, p < 0.01 and p < 0.001). TBR (max and mean values) is a more reliable parameter than SUV in identifying inflamed plaques. Although limited by the small population analyzed, our results suggest the important role of 18F-FDG PET/CT, using TBR, in identification of high-risk carotid atherosclerotic plaques.
    Annals of Nuclear Medicine 04/2014; · 1.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to determine if delayed (18)F-fluorodeoxyglucose ((18)FDG) PET/CT imaging improves quantitation of atherosclerotic plaque inflammation. Blood-pool activity can disturb the arterial (18)FDG signal. With time, blood-pool activity declines. Therefore, delayed imaging can potentially improve quantitation of vascular inflammation. 40 subjects were prospectively assessed by dual-time-point PET/CT imaging at approximately 90 and 180 minutes after (18)FDG administration. For both time-points, global uptake of (18)FDG was determined in the carotid arteries and thoracic aorta by calculating the blood-pool corrected maximum standardized uptake value (cSUVMAX). A target-to-background ratio (TBR) was calculated to determine the contrast resolution at 90 and 180 minutes. Furthermore, we assessed whether the acquisition time-point affected the relation between cSUVMAX and the estimated 10-year risk for fatal cardiovascular disease (SCORE %). A significant increase in carotid cSUVMAX (23%, P < .0001), carotid TBR (20%, P < .0001), aortic cSUVMAX (14%, P < .0001), and aortic TBR (20%, P < .0001) was observed with time. At 90 minutes, cSUVMAX did not relate to SCORE %, whereas at 180 minutes significant positive relations were observed between SCORE % and carotid (τ = 0.25, P = .045) and aortic (τ = 0.33, P = .008) cSUVMAX. Delayed (18)FDG PET/CT imaging at 180 minutes improves quantitation of atherosclerotic plaque inflammation over imaging at 90 minutes. Therefore, the optimal acquisition time-point to assess atherosclerotic plaque inflammation lies beyond the advocated time-point of 90 minutes after (18)FDG administration.
    Journal of Nuclear Cardiology 03/2014; · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory monocytes and macrophages also induce tissue oxidative damage through the inflammatory enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular macrophage imaging. Particular stress will be given to macrophage functional and enzymatic activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging.
    Current Cardiovascular Imaging Reports 04/2014; 7(4):9258.


Available from