Ancestry of Pink Disease (Infantile Acrodynia) Identified as a Risk Factor for Autism Spectrum Disorders

Swinburne Autism Bio-Research Initiative (SABRI), Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Hawthorn, Victoria, Australia.
Journal of Toxicology and Environmental Health Part A (Impact Factor: 2.35). 09/2011; 74(18):1185-94. DOI: 10.1080/15287394.2011.590097
Source: PubMed


Pink disease (infantile acrodynia) was especially prevalent in the first half of the 20th century. Primarily attributed to exposure to mercury (Hg) commonly found in teething powders, the condition was developed by approximately 1 in 500 exposed children. The differential risk factor was identified as an idiosyncratic sensitivity to Hg. Autism spectrum disorders (ASD) have also been postulated to be produced by Hg. Analogous to the pink disease experience, Hg exposure is widespread yet only a fraction of exposed children develop an ASD, suggesting sensitivity to Hg may also be present in children with an ASD. The objective of this study was to test the hypothesis that individuals with a known hypersensitivity to Hg (pink disease survivors) may be more likely to have descendants with an ASD. Five hundred and twenty-two participants who had previously been diagnosed with pink disease completed a survey on the health outcomes of their descendants. The prevalence rates of ASD and a variety of other clinical conditions diagnosed in childhood (attention deficit hyperactivity disorder, epilepsy, Fragile X syndrome, and Down syndrome) were compared to well-established general population prevalence rates. The results showed the prevalence rate of ASD among the grandchildren of pink disease survivors (1 in 22) to be significantly higher than the comparable general population prevalence rate (1 in 160). The results support the hypothesis that Hg sensitivity may be a heritable/genetic risk factor for ASD.


Available from: Kerrie Shandley
  • Source
    • "As Hong Kong suffers from mercury pollution, the sensitive monitoring of environmental contaminants is essential to safeguard citizens' health. Mercury(II) can cause damage to the human brain, kidneys and lungs (Clifton 2007, Garrecht and Austin 2011), and can cause diseases such as acrodynia (Shandley and Austin 2011), Hunter–Russell syndrome (Kondo 2000) and Minamata disease (Davidson et al 2004). Therefore, the development of in-field detection methods for mercury(II) ions remains an important challenge (Davidson et al 2004, Holmes et al 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mercury is a highly toxic environmental contaminant that damages the endocrine and central nervous systems. In view of the contamination of Hong Kong territorial waters with anthropogenic pollutants such as trace heavy metals, we have investigated the application of our recently developed DNA-based luminescence methodology for the rapid and sensitive detection of mercury(II) ions in real water samples. The assay was applied to water samples from Shing Mun River, Nam Sang Wai and Lamma Island sea water, representing natural river, wetland and sea water media, respectively. The results showed that the system could function effectively in real water samples under conditions of low turbidity and low metal ion concentrations. However, high turbidity and high metal ion concentrations increased the background signal and reduced the performance of this assay.
    Environmental Research Letters 11/2012; 7(4):044032. DOI:10.1088/1748-9326/7/4/044032 · 3.91 Impact Factor
  • Source
    • "A recent study showed a three-fold rate increase of autism in the descendants of survivors of the mercury induced Pink disease (infantile acrodynia). The study did not separate out matrilineal descendants, so it is impossible to determine whether there were toxins passed in utero, or whether the increased incidence was a result of a genetic hypersensitivity to mercury [174]. This sort of inheritance can also happen in other systems [175]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism is the fastest growing developmental disorder in the world today. The prevalence of autism in the US has risen from 1 in 2500 in 1970 to 1 in 88 children today. People with autism present with repetitive movements and with social and communication impairments. These impairments can range from mild to profound. The estimated total lifetime societal cost of caring for one individual with autism is $3.2 million US dollars. With the rapid growth in this disorder and the great expense of caring for those with autism, it is imperative for both individuals and society that techniques be developed to model and understand autism. There is increasing evidence that those individuals diagnosed with autism present with highly diverse set of abnormalities affecting multiple systems of the body. To this date, little to no work has been done using a whole body systems biology approach to model the characteristics of this disorder. Identification and modelling of these systems might lead to new and improved treatment protocols, better diagnosis and treatment of the affected systems, which might lead to improved quality of life by themselves, and, in addition, might also help the core symptoms of autism due to the potential interconnections between the brain and nervous system with all these other systems being modeled. This paper first reviews research which shows that autism impacts many systems in the body, including the metabolic, mitochondrial, immunological, gastrointestinal and the neurological. These systems interact in complex and highly interdependent ways. Many of these disturbances have effects in most of the systems of the body. In particular, clinical evidence exists for increased oxidative stress, inflammation, and immune and mitochondrial dysfunction which can affect almost every cell in the body. Three promising research areas are discussed, hierarchical, subgroup analysis and modeling over time. This paper reviews some of the systems disturbed in autism and suggests several systems biology research areas. Autism poses a rich test bed for systems biology modeling techniques.
    Journal of Clinical Bioinformatics 10/2012; 2(1):17. DOI:10.1186/2043-9113-2-17
  • Source
    • "These have been found in humans and animals [31]. In Sweden, for example, the nutritional and smoking habits of paternal grandparents could influence the health of their grandchildren and in Australia the mercury sensitivity of paternal grandparents who had pink disease as infants, affected their grandchildren [32]. This hypothesis is eminently testable in contemporaneous Huancavelica residents. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mercury is added to the biosphere by anthropogenic activities raising the question of whether changes in the human chromatin, induced by mercury, in a parental generation could allow adaptation of their descendants to mercury. We review the history of Andean mining since pre-Hispanic times in Huancavelica, Peru. Despite the persistent degradation of the biosphere today, no overt signs of mercury toxicity could be discerned in present day inhabitants. However, mercury is especially toxic to the autonomic nervous system (ANS). We, therefore, tested ANS function and biologic rhythms, under the control of the ANS, in 5 Huancavelicans and examined the metal content in their hair. Mercury levels varied from none to 1.014 ppm, significantly less than accepted standards. This was confirmed by microfocused synchrotron X-ray fluorescence analysis. Biologic rhythms were abnormal and hair growth rate per year, also under ANS control, was reduced (P < 0.001). Thus, evidence of mercury's toxicity in ANS function was found without other signs of intoxication. Our findings are consistent with the hypothesis of partial transgenerational inheritance of tolerance to mercury in Huancavelica, Peru. This would generally benefit survival in the Anthropocene, the man-made world, we now live in.
    BioMed Research International 07/2012; 2012(4):472858. DOI:10.1155/2012/472858 · 2.71 Impact Factor
Show more