Extracellular Matrix Powder Protects Against Bleomycin-Induced Pulmonary Fibrosis

Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
Tissue Engineering Part A (Impact Factor: 4.64). 07/2011; 17(21-22):2795-804. DOI: 10.1089/ten.tea.2011.0023
Source: PubMed


Pulmonary fibrosis refers to a group of lung diseases characterized by inflammation, fibroblast proliferation, and excessive collagen deposition. Although the mechanisms underlying pulmonary fibrosis are poorly understood, current evidence suggests that epithelial injury contributes to the development of fibrosis. Regenerative medicine approaches using extracellular matrix (ECM) scaffolds have been shown to promote site-specific tissue remodeling. This led to the hypothesis that particulate ECM would promote normal tissue repair and attenuate bleomycin-induced pulmonary fibrosis. C57BL/6 mice were treated intratracheally with bleomycin or saline with or without a particulate form of ECM scaffold from porcine urinary bladder matrix (UBM-ECM) or enzymatically digested UBM-ECM. Mice were sacrificed 5 and 14 days after exposure. Compared to control mice, bleomycin-exposed mice had similar increases in inflammation in the bronchoalveolar lavage fluid regardless of UBM-ECM treatment. However, 14 days after exposure, lung histology and collagen levels revealed that mice treated with bleomycin and the particulate or digested UBM-ECM had negligible fibrosis, whereas mice given only bleomycin had marked fibrosis. Administration of the particulate UBM-ECM 24 h after bleomycin exposure also significantly protected against pulmonary injury. In vitro epithelial cell migration and wound healing assays revealed that particulate UBM-ECM promoted epithelial cell chemotaxis and migration. This suggests that promotion of epithelial wound repair may be one mechanism in which UBM-ECM limits pulmonary fibrosis.

Download full-text


Available from: Caitlin A. Czajka, Apr 14, 2015
13 Reads
  • Source
    • "The images were obtained with an x40 objective lens, recorded on a digital camera (DP-71, Olympus) and analyzed using ImageJ® image analysis software ( The analysis methodology was performed according to Manni et al.[35]. Collagen content was calculated as a percentage of the area of each image (24,137μm2; 3,338,208 pixels). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Cimetidine, histamine H2 receptors antagonist, has caused adverse effects on the male hormones and reproductive tract due to its antiandrogenic effect. In the testes, peritubular myoid cells and muscle vascular cells death has been associated to seminiferous tubules and testicular microvascularization damages, respectively. Either androgen or histamine H2 receptors have been detected in the mucosa and smooth muscular layer of vas deferens. Thus, the effect of cimetidine on this androgen and histamine-dependent muscular duct was morphologically evaluated. Methods The animals from cimetidine group (CMTG; n=5) received intraperitoneal injections of 100 mg/kg b.w. of cimetidine for 50 days; the control group (CG) received saline solution. The distal portions of vas deferens were fixed in formaldehyde and embedded in paraffin. Masson´s trichrome-stained sections were subjected to morphological and the following morphometrical analyzes: epithelial perimeter and area of the smooth muscular layer. TUNEL (Terminal deoxynucleotidyl-transferase mediated dUTP Nick End Labeling) method, NF-kB (nuclear factor kappa B) and AR (androgen receptors) immunohistochemical detection were also carried out. The birefringent collagen of the muscular layer was quantified in picrosirius red-stained sections under polarized light. The muscular layer was also evaluated under Transmission Electron Microscopy (TEM). Results In CMTG, the mucosa of vas deferens was intensely folded; the epithelial cells showed numerous pyknotic nuclei and the epithelial perimeter and the area of the muscular layer decreased significantly. Numerous TUNEL-labeled nuclei were found either in the epithelial cells, mainly basal cells, or in the smooth muscle cells which also showed typical features of apoptosis under TEM. While an enhanced NF-kB immunoexpression was found in the cytoplasm of muscle cells, a weak AR immunolabeling was detected in these cells. In CMTG, no significant difference was observed in the birefringent collagen content of the muscular layer in comparison to CG. Conclusions Cimetidine induces significant damages in the epithelium; a possible antiandrogenic effect on the basal cells turnover should be considered. The cimetidine-induced muscle cells apoptosis confirms the susceptibility of these cells to this drug. The parallelism between enhanced cytoplasmic NF-kB immunolabeling in the damaged muscular tissue and muscle cell apoptosis suggests that this drug may avoid the translocation of NF-kB to the nucleus and interfere in the control of NF-kB-mediated smooth muscle cell apoptosis. The decreased immunoexpression of ARs verified in the damaged muscular tissue reinforces this possibility.
    Reproductive Biology and Endocrinology 04/2013; 11(1):29. DOI:10.1186/1477-7827-11-29 · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review describes the challenges created by the existence of multiple molecular pathways leading to fibrosis and proposes that attention be focused on targeting the fibroblasts and myofibroblasts which themselves produce multiple cytokines and growth factors as well as the extracellular matrix, which is the hallmark of fibrotic lung disease. The last 20 years have seen remarkable progress in our understanding of the molecular pathogenesis of pulmonary fibrosis leading to multiple programmes in drug discovery, and there are currently 15 actively recruiting trials registered on Unfortunately, at this time only one new drug, pirfenidone, has progressed to approval for use in patients. Part of the frustration is that drugs that are effective in targeting inflammatory pathways have been ineffective in lung fibrosis. This may result from the inability to treat patients early in the disease process but it is also likely that pathways independent of inflammation can drive fibrosis. We further propose that this approach should inhibit fibrosis independent of cell type or the signalling cascade that is activating these cells. We are hopeful that the next 20 years will see many more therapeutic options for patients suffering with fibrotic lung disease.
    Current opinion in pulmonary medicine 07/2012; 18(5):462-9. DOI:10.1097/MCP.0b013e328356800f · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is an ever-growing demand for transplantable organs to replace acute and chronically damaged tissues. This demand cannot be met by the currently available donor organs. Efforts to provide an alternative source have led to the development of organ engineering, a discipline that combines cell biology, tissue engineering, and cell/organ transplantation. Over the last several years, engineered organs have been implanted into rodent recipients and have shown modest function. In this article, we summarize the most recent advances in this field and provide a perspective on the challenges of translating this promising new technology into a proven regenerative therapy.
    The Journal of clinical investigation 11/2012; 122(11):3817-23. DOI:10.1172/JCI61974 · 13.22 Impact Factor
Show more