Article

Spatial distribution of microbial communities in the cystic fibrosis lung

Department of Biology, San Diego State University, San Diego, CA, USA.
The ISME Journal (Impact Factor: 9.27). 07/2011; 6(2):471-4. DOI: 10.1038/ismej.2011.104
Source: PubMed

ABSTRACT Cystic fibrosis (CF) is a common fatal genetic disorder with mortality most often resulting from microbial infections of the lungs. Culture-independent studies of CF-associated microbial communities have indicated that microbial diversity in the CF airways is much higher than suggested by culturing alone. However, these studies have relied on indirect methods to sample the CF lung such as expectorated sputum and bronchoalveolar lavage (BAL). Here, we characterize the diversity of microbial communities in tissue sections from anatomically distinct regions of the CF lung using barcoded 16S amplicon pyrosequencing. Microbial communities differed significantly between different areas of the lungs, and few taxa were common to microbial communities in all anatomical regions surveyed. Our results indicate that CF lung infections are not only polymicrobial, but also spatially heterogeneous suggesting that treatment regimes tailored to dominant populations in sputum or BAL samples may be ineffective against infections in some areas of the lung.

Download full-text

Full-text

Available from: Dana Willner, Jul 06, 2015
0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a poor understanding of how the physiology of polymicrobial communities in cystic fibrosis (CF) lungs contributes to pulmonary exacerbations and lung function decline. In this study, a microbial culture system based on the principles of the Winogradsky column (WinCF system) was developed to study the physiology of CF microbes. The system used glass capillary tubes filled with artificial sputum medium to mimic a clogged airway bronchiole. Chemical indicators were added to observe microbial physiology within the tubes. Characterization of sputum samples from seven patients showed variation in pH, respiration, biofilm formation and gas production, indicating that the physiology of CF microbial communities varied among patients. Incubation of homogenized tissues from an explant CF lung mirrored responses of a Pseudomonas aeruginosa pure culture, supporting evidence that end-stage lungs are dominated by this pathogen. Longitudinal sputum samples taken through two exacerbation events in a single patient showed that a two-unit drop in pH and a 30% increase in gas production occurred in the tubes prior to exacerbation, which was reversed with antibiotic treatment. Microbial community profiles obtained through amplification and sequencing of the 16S rRNA gene showed that fermentative anaerobes became more abundant during exacerbation and were then reduced during treatment where P. aeruginosa became the dominant bacterium. Results from the WinCF experiments support the model where two functionally different CF microbial communities exist, the persistent Climax Community and the acute Attack Community. Fermentative anaerobes are hypothesized to be the core members of the Attack Community and production of acidic and gaseous products from fermentation may drive developing exacerbations. Treatment targeting the Attack Community may better resolve exacerbations and resulting lung damage.
    The ISME Journal 12/2014; 9(4). DOI:10.1038/ismej.2014.234 · 9.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients suffering from cystic fibrosis (CF) develop chronic lung infections because of highly viscous mucus, where bacteria can form biofilms. In this study, we investigated the microorganisms present in the lungs of end-stage and non-end-stage patients using standard culturing techniques and molecular methods. Tissue and sputum samples (n = 34) from explanted lungs of five end-stage patients were examined along with routine expectorates (n = 15) from 13 patients with non-end-stage CF, representing earlier stages of chronic lung infections. Previously, using peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH), we have shown that Pseudomonas aeruginosa was the sole pathogen in end-stage CF lungs (Pediatr Pulmonol 2009, 44: 547). In this study, this tendency was supported by the results of real-time PCR, confirming previous results obtained by standard culturing and 16S rRNA gene analysis (J Clin Microbiol 2011, 49: 4352). Conversely, the non-end-stage patients were found to harbor several species by culturing. PNA FISH confirmed heterogeneous microbiota and showed that the bacteria were located in monospecies aggregates with no apparent physical interaction between the different microcolonies. In conclusion, standard culturing identifies the dominating pathogens, which seem to reside in monospecies microcolonies. The possibility of signaling between the distinct microcolonies still has to be verified and elucidated.
    FEMS Immunology & Medical Microbiology 12/2011; 65(2):236-44. DOI:10.1111/j.1574-695X.2011.00925.x · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial communities in the lungs of patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) have been shown to be spatially heterogeneous. Viral communities may also vary spatially, leading to localized viral populations and infections. Here, we characterized viral communities from multiple areas of the lungs of two patients with late-stage CF using metagenomics, that is, the explanted lungs from a transplant patient and lungs acquired postmortem. All regions harbored eukaryotic viruses that may infect the human host, notably herpesviruses, anelloviruses, and papillomaviruses. In the highly diseased apical lobes of explant lungs, viral diversity was extremely low, and only eukaryotic viruses were present. The absence of phage suggests that CF-associated microbial biofilms may escape top-down controls by phage predation. The phages present in other lobes of explant lungs and in all lobes of postmortem lungs comprised distinct communities, and encoded genes for clinically important microbial phenotypes, including small colony variants and antibiotic resistance. Based on the these observations, we postulate that viral communities in CF lungs are spatially distinct and contribute to CF pathology by augmenting the metabolic potential of resident microbes, as well as by directly damaging lung tissue via carcinomas and herpesviral outbreaks.
    American Journal of Respiratory Cell and Molecular Biology 02/2012; 46(2):127-31. DOI:10.1165/rcmb.2011-0253OC · 4.11 Impact Factor