KCNQ5/K(v)7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina.

Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
AJP Cell Physiology (Impact Factor: 3.71). 07/2011; 301(5):C1017-26. DOI: 10.1152/ajpcell.00185.2011
Source: PubMed

ABSTRACT Previous studies identified in retinal pigment epithelial (RPE) cells an M-type K(+) current, which in many other cell types is mediated by channels encoded by KCNQ genes. The aim of this study was to assess the expression of KCNQ genes in the monkey RPE and neural retina. Application of the specific KCNQ channel blocker XE991 eliminated the M-type current in freshly isolated monkey RPE cells, indicating that KCNQ subunits contribute to the underlying channels. RT-PCR analysis revealed the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in the RPE and all five KCNQ transcripts in the neural retina. At the protein level, KCNQ5 was detected in the RPE, whereas both KCNQ4 and KCNQ5 were found in neural retina. In situ hybridization in frozen monkey retinal sections revealed KCNQ5 gene expression in the ganglion cell layer and the inner and outer nuclear layers of the neural retina, but results in the RPE were inconclusive due to the presence of melanin. Immunohistochemistry revealed KCNQ5 in the inner and outer plexiform layers, in cone and rod photoreceptor inner segments, and near the basal membrane of the RPE. The data suggest that KCNQ5 channels contribute to the RPE basal membrane K(+) conductance and, thus, likely play an important role in active K(+) absorption. The distribution of KCNQ5 in neural retina suggests that these channels may function in the shaping of the photoresponses of cone and rod photoreceptors and the processing of visual information by retinal neurons.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 μM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 μM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 μM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 μM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits.
    AJP Cell Physiology 11/2011; 302(5):C821-33. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Refractive error is the most common eye disorder worldwide and is a prominent cause of blindness. Myopia affects over 30% of Western populations and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses, including 37,382 individuals from 27 studies of European ancestry and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in individuals of European ancestry, of which 8 were shared with Asians. Combined analysis identified 8 additional associated loci. The new loci include candidate genes with functions in neurotransmission (GRIA4), ion transport (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2 and BMP2) and eye development (SIX6 and PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for individuals carrying the highest genetic load. Our results, based on a large meta-analysis across independent multiancestry studies, considerably advance understanding of the mechanisms involved in refractive error and myopia.
    Nature Genetics 02/2013; · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25610 28), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11610 211) and 8q12 (minimum p value 1.82610 211) previously reported for MSE and myopia age at onset. We also used an intermarker linkage-disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. ''Replication-level'' association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.
    PLoS ONE 09/2014; 9(9). · 3.53 Impact Factor