Article

S100A4-induced cell motility and metastasis is restricted by the Wnt/β-catenin pathway inhibitor calcimycin in colon cancer cells.

Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.
Molecular biology of the cell (Impact Factor: 5.98). 07/2011; 22(18):3344-54. DOI: 10.1091/mbc.E10-09-0739
Source: PubMed

ABSTRACT The calcium-binding protein S100A4 is a central mediator of metastasis formation in colon cancer. S100A4 is a target gene of the Wnt/β-catenin pathway, which is constitutively active in the majority of colon cancers. In this study a high-throughput screen was performed to identify small-molecule compounds targeting the S100A4-promoter activity. In this screen calcimycin was identified as a transcriptional inhibitor of S100A4. In colon cancer cells calcimycin treatment reduced S100A4 mRNA and protein expression in a dose- and time-dependent manner. S100A4-induced cellular processes associated with metastasis formation, such as cell migration and invasion, were inhibited by calcimycin in an S100A4-specific manner. Calcimycin reduced β-catenin mRNA and protein levels despite the expression of Δ45-mutated β-catenin. Consequently, calcimycin inhibited Wnt/β-catenin pathway activity and the expression of prominent β-catenin target genes such as S100A4, cyclin D1, c-myc, and dickkopf-1. Finally, calcimycin treatment of human colon cancer cells inhibited metastasis formation in xenografted immunodeficient mice. Our results demonstrate that targeting the expression of S100A4 with calcimycin provides a functional strategy to restrict cell motility in colon cancer cells. Therefore calcimycin may be useful for studying S100A4 biology, and these studies may serve as a lead for the development of treatments for colon cancer metastasis.

0 Bookmarks
 · 
313 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1-Methylpropyl 2-imidazolyl disulfide (PX-12) has been proposed as an inhibitor of thioredoxin-1 (Trx-1) with antitumor activity. However, the antitumor activity of the Trx-1 redox signaling inhibitor PX-12 on colorectal cancer is still obscure. In the present study, we showed that PX-12 inhibited the growth of colorectal cancer DLD-1 and SW620 cells in a dose- and time-dependent manner. Further analysis demonstrated that PX-12 reduced cell colony formation and induced a G2/M phase arrest of the cell cycle. In addition, PX-12 treatment induced apoptosis, as observed by the increased number of Annexin V-positive cells and increased activation of caspase-3. Notably, a low dose of PX-12 inhibited colorectal cancer cell migration and invasion. Treatment of cancer cells with PX-12 reduced NOX1, CDH17 and S100A4 mRNA expression, and increased KLF17 mRNA expression. Moreover, PX-12 decreased S100A4 protein expression in the colorectal cancer cells. Collectively, the present study demonstrates the antitumor effects and therapeutic potential of PX-12 in colorectal cancer.
    Oncology Reports 12/2014; 33(2). DOI:10.3892/or.2014.3652 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The morbidity and mortality attributable to heritable and sporadic carcinomas of the colon are substantial and affect children and adults alike. Despite current colonoscopy screening recommendations colorectal adenocarcinoma (CRC) still accounts for almost 140000 cancer cases yearly. Familial adenomatous polyposis (FAP) is a colon cancer predisposition due to alterations in the adenomatous polyposis coli gene, which is mutated in most CRC. Since the beginning of the genomic era next-generation sequencing analyses of CRC continue to improve our understanding of the genetics of tumorigenesis and promise to expand our ability to identify and treat this disease. Advances in genome sequence analysis have facilitated the molecular diagnosis of individuals with FAP, which enables initiation of appropriate monitoring and timely intervention. Genome sequencing also has potential clinical impact for individuals with sporadic forms of CRC, providing means for molecular diagnosis of CRC tumor type, data guiding selection of tumor targeted therapies, and pharmacogenomic profiles specifying patient specific drug tolerances. There is even a potential role for genomic sequencing in surveillance for recurrence, and early detection, of CRC. We review strategies for diagnostic assessment and management of FAP and sporadic CRC in the current genomic era, with emphasis on the current, and potential for future, impact of genome sequencing on the clinical care of these conditions.
    12/2014; 5(5):1036-1047. DOI:10.5306/wjco.v5.i5.1036
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive "atlas" of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements.

Full-text (2 Sources)

Download
41 Downloads
Available from
May 26, 2014