Widespread endogenization of densoviruses and parvoviruses in animal and human genomes.

College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
Journal of Virology (Impact Factor: 5.08). 07/2011; 85(19):9863-76. DOI:10.1128/JVI.00828-11
Source: PubMed

ABSTRACT Parvoviruses infect humans and a broad range of animals, from mammals to crustaceans, and generally are associated with a variety of acute and chronic diseases. However, many others cause persistent infections and are not known to be associated with any disease. Viral persistence is likely related to the ability to integrate into the chromosomal DNA and to establish a latent infection. However, there is little evidence for genome integration of parvoviral DNA except for Adeno-associated virus (AAV). Here we performed a systematic search for homologs of parvoviral proteins in publicly available eukaryotic genome databases followed by experimental verification and phylogenetic analysis. We conclude that parvoviruses have frequently invaded the germ lines of diverse animal species, including mammals, fishes, birds, tunicates, arthropods, and flatworms. The identification of orthologous endogenous parvovirus sequences in the genomes of humans and other mammals suggests that parvoviruses have coexisted with mammals for at least 98 million years. Furthermore, some of the endogenized parvoviral genes were expressed in eukaryotic organisms, suggesting that these viral genes are also functional in the host genomes. Our findings may provide novel insights into parvovirus biology, host interactions, and evolution.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Recent studies have uncovered myriad viral sequences that are integrated or 'endogenized' in the genomes of various eukaryotes. Surprisingly, it appears that not just retroviruses but almost all types of viruses can become endogenous. We review how these genomic 'fossils' offer fresh insights into the origin, evolutionary dynamics and structural evolution of viruses, which are giving rise to the burgeoning field of palaeovirology. We also examine the multitude of ways through which endogenous viruses have influenced, for better or worse, the biology of their hosts. We argue that the conflict between hosts and viruses has led to the invention and diversification of molecular arsenals, which, in turn, promote the cellular co-option of endogenous viruses.
    Nature Reviews Genetics 01/2012; 13(4):283-96. · 41.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Human bocavirus is the second autonomous human parvovirus with assumed pathogenic potential. Other parvoviruses are known to persist and even integrate into the host genome, eventually contributing to the multi-step development of cancer. Human bocavirus also persists in an unknown percentage of clinically asymptomatic patients in addition to those with primary infection. The aim of the present study was to analyze the role of Human bocavirus in lung and colorectal cancers. Therefore, formalin-fixed, paraffin-embedded, archived tumor samples were screened for Human bocavirus DNA by PCR, Southern blotting, and sequencing. Positive tissues were further subjected to fluorescence in situ hybridization analysis to specifically detect human bocavirus DNA in the infected cells. In total, 11 of the 60 (18.3%) lung and 9 of the 44 (20.5%) colorectal tumors tested positive for human bocavirus DNA by PCR and were confirmed by sequencing and fluorescence in situ hybridization analysis. Thus, human bocavirus DNA is present in the nuclei of infected cells, in either single or multiple copies, and appears to form concatemers. The occurrence of these human bocavirus DNA structures supports the existence of the postulated σ- or rolling-hairpin replication mechanism. Moreover, the fluorescence in situ hybridization patterns inspired the hypothesis that human bocavirus DNA either persists as cccDNA or is integrated into the host genome. This finding suggests that this virus may indirectly contribute to the development of some colorectal and lung cancers, as do other DNA viruses, such as the human hepatitis B virus, or may play an active role in cancer by interacting with the host genome.
    PLoS ONE 01/2013; 8(6):e68020. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Echinoderms are important constituents of marine ecosystems, where they may influence the recruitment success of benthic flora and fauna, and are important consumers of detritus and plant materials. There are currently no described viruses of echinoderms. We used a viral metagenomic approach to examine viral consortia within three urchins - Colobocentrotus atratus, Tripneustes gratilla, and Echinometra mathaei - which are common constituents of reef communities in the Hawaiian archipelago. Metagenomic libraries revealed the presence of bacteriophage and densoviruses (Parvoviridae) in tissues of all three urchins. Densoviruses are typically known to infect terrestrial and aquatic arthropods. Urchin-associated densoviruses were detected by qPCR in all tissues tested, and were also detected in filtered suspended matter (> 0.2µm) from plankton and in sediments at several locations near to where urchins were collected for metagenomic analysis. This is the first report of echinoderm-associated viruses, which extends the known host range of parvoviruses.
    Journal of General Virology 12/2013; · 3.13 Impact Factor

Full-text (2 Sources)

Available from
Nov 5, 2013