Article

Glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners.

Department of Physical Medicine and Rehabilitation Taipei Medical University-Wan Fang Hospital Taipei 11696, Taiwan, Republic of China.
The Chinese journal of physiology (Impact Factor: 0.75). 04/2010; 53(2):91-8.
Source: PubMed

ABSTRACT The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important during running. Furthermore, for each unit muscle volume, movers of ankle are more glucose-demanding than those of hip.

0 Bookmarks
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the complexity of movement in cross-country skiing (XCS), the muscle activation patterns are not well elucidated. Previous studies have applied surface electromyography (SEMG); however, recent gains in three-dimensional (3D) imaging techniques such as positron emission tomography (PET) have rendered an alternative approach to investigate muscle activation. The purpose of the present study was to examine muscle use during double poling (DP) at two work intensities by use of PET. Eight male subjects performed two 20-min DP bouts on separate days. Work intensity was ∼ 53 and 74% of peak oxygen uptake (Vo(2peak)), respectively. During exercise 188 ± 8 MBq of [(18)F]fluorodeoxyglucose ([(18)F]FDG) was injected, and subsequent to exercise a full-body PET scan was conducted. Regions of interest (ROI) were defined within 15 relevant muscles, and a glucose uptake index (GUI) was determined for all ROIs. The muscles that span the shoulder and elbow joints, the abdominal muscles, and hip flexors displayed the greatest GUI during DP. Glucose uptake did not increase significantly from low to high intensity in most upper body muscles; however, an increased GUI (P < 0.05) was seen for the knee flexor (27%) and extensor muscles (16%), and for abdominal muscles (21%). The present data confirm previous findings that muscles of the upper limb are the primary working muscles in DP. The present data further suggest that when exercise intensity increases, the muscles that span the lumbar spine, hip, and knee joints contribute increasingly. Finally, PET provides a promising alternative or supplement to existing methods to assess muscle activation in complex human movements.
    Journal of Applied Physiology 12/2010; 109(6):1895-903. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To quantify the differential effects of chemotherapy on the metabolic activity of skeletal muscle in vivo using molecular imaging with [18F]-fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT). In this retrospective study, 21 subjects with stage IV melanoma who underwent pre- and post-chemotherapy whole-body FDG-PET/CT imaging were included. The mean standardized uptake value (SUVmean) of 8 different skeletal muscles was measured per subject. Pre- and post-treatment measurements were then averaged across all subjects for each muscle and compared for statistically significant differences between the muscles and following different chemotherapy regimens including dacarbazine (DTIC) and temozolomide (TMZ). Analysis of FDG-PET/CT images reliably detected changes in skeletal muscle metabolic activity based on muscle location. The percent change in metabolic activity of each skeletal muscle in each subject following chemotherapy was observed to be related to the type of chemotherapy received. Subjects receiving DTIC generally had a decrease in metabolic activity of all muscle groups, whereas subjects receiving TMZ generally had an increase in muscle activity of all muscle groups. FDG-PET/CT can reveal baseline metabolic differences between different muscles of the body. Different chemotherapies are associated with differential changes in the metabolic activity of skeletal muscle, which can be detected and quantified with FDG-PET/CT.
    Annals of Nuclear Medicine 02/2014; · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effect of the FIFA 11+ warm-up program on whole body muscle activity using positron emission tomography. Ten healthy male volunteers were divided into a control group and a group that performed injury prevention exercises (The 11+). The subjects of the control group were placed in a sitting position for 20 min and 37 MBq of (18)F-fluorodeoxyglucose (FDG) was injected intravenously. The subjects then remained seated for 45 min. The subjects of the exercise group performed part 2 of the 11+for 20 min, after which FDG was injected. They then performed part 2 of the 11+for 20 min, and rested for 25 min in a sitting position. Positron emission tomography-computed tomography images were obtained 50 min after FDG injection in each group. Regions of interest were defined within 30 muscles. The standardized uptake value was calculated to examine the FDG uptake of muscle tissue per unit volume. FDG accumulation within the abdominal rectus, gluteus medius and minimus were significantly higher in the exercise group than in the control group (P<0.05). The hip abductor muscles and abdominal rectus were active during part 2 of the FIFA 11+ program.
    PLoS ONE 01/2013; 8(9):e73898. · 3.53 Impact Factor

Full-text (2 Sources)

Download
4 Downloads
Available from
Jul 18, 2014