Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing.

Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hong Kong, China.
Advanced Materials (Impact Factor: 14.83). 07/2011; 23(35):4035-40. DOI: 10.1002/adma.201102017
Source: PubMed
  • [Show abstract] [Hide abstract]
    ABSTRACT: An organic electrochemical transistor array is integrated with human airway epithelial cells. This integration provides a novel method to couple transepithelial ion transport with electrical current. Activation and inhibition of transepithelial ion transport are readily detected with excellent time resolution. The organic electrochemical transistor array serves as a promising platform for physiological studies and drug testing.
    Advanced Materials 08/2013; · 14.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Organic electrochemical transistors (OECT) have been used as various types of biosensors with very high sensitivity. The OECTs show advantages of easy fabrication, low operational voltage, excellent flexibility and biocompatibility. METHODS: OECT arrays based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were fabricated in poly(ethylene glycol) (PEG) microwells by physical delamination. RESULTS: The OECTs show fast response time, stable channel current and excellent transistor characteristics. The PEG microwells can be used to trap cells on top of the OECTs, which will be important for the application of the OECT arrays as cell-based biosensors. GENERAL SIGNIFICANCE: This technique provides a feasible way for high-throughput cell analysis based on transistor arrays. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine.
    Biochimica et Biophysica Acta 09/2012; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Organic Electrochemical Transistors (OECTs), which are becoming more and more promising devices for applications in bioelectronics and nanomedicine, are proposed here as ideally suitable for sensing and real time monitoring of liposome-based structures. This is quite relevant since, currently, the techniques used to investigate liposomal structures, their stability in different environments as well as drug loading and delivery mechanisms, operate basically off-line and/or with pre-prepared sampling. METHODS: OECTs, based on the PEDOT:PSS conductive polymer, have been employed as sensors of liposome-based nanoparticles in electrolyte solutions to assess sensitivity and monitoring capabilities based on ion-to-electron amplified transduction. RESULTS: We demonstrate that OECTs are very efficient, reliable and sensitive devices for detecting liposome-based nanoparticles on a wide dynamic range down to 10(-5)mg/ml (with a lowest detection limit, assessed in real-time monitoring, of 10(-7)mg/ml), thus matching the needs of typical drug loading/drug delivery conditions. They are hence particularly well suited for real-time monitoring of liposomes in solution. Furthermore, OECTs are shown to sense and discriminate successive injection of different liposomes, so that they could be good candidates in quality-control assays or in pharmaceutical industry. General Significance Drug loading and delivery by liposome-based structures is a fast growing and very promising field that will strongly benefit from real-time, highly sensitive and low cost monitoring of their dynamics in different pharma and biomedical environments, with a particular reference to the pharmaceutical and production processes, where a major issue is monitoring and measuring the formation and concentration of liposomes and the relative drug load. The demonstrated ability to sense and monitor complex bio-structures, such as liposomes, paves the way for very promising developments in biosensing and nanomedicine.
    Biochimica et Biophysica Acta 01/2013; · 4.66 Impact Factor