White Beans Provide More Bioavailable Iron than Red Beans: Studies in Poultry (Gallus gallus) and an in vitro Digestion/Caco-2 Model

Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
International Journal for Vitamin and Nutrition Research (Impact Factor: 0.85). 12/2010; 80(6):416-29. DOI: 10.1024/0300-9831/a000028
Source: PubMed


Iron-biofortification of crops is a strategy that alleviates iron deficiency. The common bean (Phaseolus vulgaris L.) is an attractive candidate for biofortification. However, beans are high in polyphenols that may inhibit iron absorption. In vitro studies have shown that iron bioavailability from white beans is higher than that from colored beans. In this study, our objective was to determine if white beans contain more bioavailable iron than red beans and to determine if the in vitro observations of bean-iron bioavailability would be evident in an in vivo feeding trial. We compared iron bioavailability between diets containing either white (Matterhorn) or red (Merlot) beans, which differ in polyphenol content. One-week-old chicks (Gallus gallus) were divided into four groups: 1. "WB": 40% white-bean diet; 2. "RB" :40% red-bean diet; 3. "WB+Fe": 40% white-bean diet; 4. "RB+Fe": 40% red-bean diet (51, 47, 179, and 175 ppm iron, respectively). Diets 1 and 2 had no supplemental iron; whereas 125 µg/g iron was added to diets 3 and 4. For 8 weeks, hemoglobin, feed consumption, and body weights were measured. Divalent metal transporter 1 (iron-uptake-transporter), duodenal-cytochrome-B (iron reductase), and ferroportin (iron-exporter) expressions were higher (p<0.05), villus-surface-area (tissue iron-deficiency adaptation) was greater in the "RB" group vs. other groups. Cecal microflora was similar between treatments. Hemoglobin, body-hemoglobin iron, and body weights were lower in the "RB" group vs. other groups (p<0.05). In vitro analysis showed lower ferritin formation (less bioavailable iron) in cells exposed to the "RB" diet. We conclude that the in vivo results support the in vitro observations; i. e., white beans contain more bioavailable iron than red beans.

Download full-text


Available from: Elad Tako, Jan 27, 2015
71 Reads
  • Source
    • "The protocols used in the ferritin and total protein contents analyses of Caco-2 cells were similar to those previously described [8,29,9,28,30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). Methods In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. Results The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. Conclusions In this study we showed that prebiotics naturally found in wheat grains/bread products significantly increased intestinal beneficial bacterial population in Fe deficient broiler chickens. With this short-term feeding trial we were not able to show differences in the Fe-status of broilers. Nevertheless, the increase in relative amounts of bifidobacteria and lactobacilli in the presence of wheat prebiotics is an important finding as these bacterial populations may affect Fe bioavailability in long-term studies.
    Nutrition Journal 06/2014; 13(1):58. DOI:10.1186/1475-2891-13-58 · 2.60 Impact Factor
  • Source
    • "The avian ferritins corresponded to a weight of approximately 470 to 500 kDa [7-9,24-26,28]. No significant differences in liver Fe or liver ferritin concentrations were measured between the treatment groups (n = 6, P > 0.05). The mean values of ferritin protein and the amount of iron present in the ferritin of the liver samples of all animals are presented in Table  3. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our objective was to determine if a biofortified variety of black bean can provide more bioavailable-iron (Fe) than a standard variety. Two lines of black beans (Phaseolus-vulgaris L.), a standard (DOR500; 59mug Fe/g) and biofortified (MIB465; 88mug Fe/g) were used. The DOR500 is a common commercial variety, and the MIB465 is a line developed for higher-Fe content. Given the high prevalence of Fe-deficiency anemia worldwide, it is important to determine if Fe-biofortified black beans can provide more absorbable-Fe. Black bean based diets were formulated to meet the nutrient requirements for the broiler (Gallus-gallus) except for Fe (dietary Fe-concentrations were 39.4+/-0.2 and 52.9+/-0.9 mg/kg diet, standard vs. biofortified, respectively). Birds (n=14) were fed the diets for 6-weeks. Hemoglobin-(Hb), liver-ferritin and Fe-related transporter/enzyme gene-expression were measured. Hemoglobin-maintenance-efficiency and total-body-Hb-Fe values were used to estimate Fe-bioavailability. Hemoglobin-maintenance-efficiency values were higher (P<0.05) in the group consuming the standard-Fe beans on days 14, 21 and 28; indicating a compensatory response to lower dietary-Fe. Final total-Hb-Fe body content was higher in the biofortified vs. the standard group (26.6+/-0.9 and 24.4+/-0.8 mg, respectively; P<0.05). There were no differences in liver-ferritin or in expression of DMT-1, Dcyt-B, and ferroportin. In-vitro Fe-bioavailability assessment indicated very low Fe-bioavailability from both diets and between the two bean varieties (P>0.05). Such extremely-low in-vitro Fe-bioavailability measurement is indicative of the presence of high levels of polyphenolic-compounds that may inhibit Fe-absorption. High levels of these compounds would be expected in the black bean seed-coats. The parameters of Fe-status measured in this study indicate that only a minor increase in absorbable-Fe was achieved with the higher-Fe beans. The results also raise the possibility that breeding for increased Fe-concentration elevated the levels of polyphenolic-compounds that can reduce bean Fe-bioavailability, although the higher levels of polyphenolics in the higher-Fe beans may simply be coincidental or an environmental effect. Regardless, Fe-biofortified beans remain a promising vehicle for increasing intakes of bioavailable-Fe in human populations that consume high levels of these beans as a dietary staple, and the bean polyphenol profile must be further evaluated and modified if possible in order to improve the nutritional quality of higher-Fe beans.
    Nutrition Journal 03/2014; 13(1):28. DOI:10.1186/1475-2891-13-28 · 2.60 Impact Factor
  • Source
    • "The mechanisms that modulate Fe bioavailability are unclear, therefore, estimating Fe bioavailability is important. We employed the Caco-2 bioassay as part of a recursive process to create maize varieties with different levels of bioavailable-Fe [9,19,23-28,48,49]. The bioassay was used to evaluate 145 members of a maize mapping population, where neither Fe concentration nor phytate levels were well correlated with bioavailable-Fe [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. DMT-1, DcytB and ferroportin expressions were higher (P < 0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P < 0.05), indicating greater Fe absorption from the diet and improved Fe status. We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable Fe maize to reduce Fe deficiency.
    Nutrition Journal 01/2013; 12(1):3. DOI:10.1186/1475-2891-12-3 · 2.60 Impact Factor
Show more