Article

Cat fertilization by mouse sperm injection.

Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea.
Zygote (Impact Factor: 1.5). 07/2011; 20(4):371-8. DOI: 10.1017/S0967199411000451
Source: PubMed

ABSTRACT Summary Interspecies intracytoplasmic sperm injection has been carried out to understand species-specific differences in oocyte environments and sperm components during fertilization. While sperm aster organization during cat fertilization requires a paternally derived centriole, mouse and hamster fertilization occur within the maternal centrosomal components. To address the questions of where sperm aster assembly occurs and whether complete fertilization is achieved in cat oocytes by interspecies sperm, we studied the fertilization processes of cat oocytes following the injection of cat, mouse, or hamster sperm. Male and female pronuclear formations were not different in the cat oocytes at 6 h following cat, mouse or hamster sperm injection. Microtubule asters were seen in all oocytes following intracytoplasmic injection of cat, mouse or hamster sperm. Immunocytochemical staining with a histone H3-m2K9 antibody revealed that mouse sperm chromatin is incorporated normally with cat egg chromatin, and that the cat eggs fertilized with mouse sperm enter metaphase and become normal 2-cell stage embryos. These results suggest that sperm aster formation is maternally dependent, and that fertilization processes and cleavage occur in a non-species specific manner in cat oocytes.

0 Bookmarks
 · 
190 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the domestic cat, morula-blastocyst formation in vitro is compromised after intracytoplasmic sperm injection (ICSI) with testicular compared to ejaculated spermatozoa. The aim of this study was to determine the cellular basis of the lower developmental potential of testicular spermatozoa. Specifically, we examined the influence of sperm DNA fragmentation (evaluated by TUNEL assay) and centrosomal function (assessed by sperm aster formation after ICSI) on first-cleavage timing, developmental rate, and morula-blastocyst formation. Because the incidences of DNA fragmentation were not different between testicular and ejaculated sperm suspensions, DNA integrity was not the origin of the reduced developmental potential of testicular spermatozoa. After ICSI, proportions of fertilized and cleaved oocytes were similar and not influenced by sperm source. However, observations made at 5 h postactivation clearly demonstrated that 1) zygotes generally contained a large sperm aster after ICSI with ejaculated spermatozoa, a phenomenon never observed with testicular spermatozoa, and 2) proportions of zygotes with short or absent sperm asters were higher after ICSI with testicular spermatozoa than using ejaculated spermatozoa. The poor pattern of aster formation arose from the testicular sperm centrosome, which contributed to a delayed first cleavage, a slower developmental rate, and a reduced formation of morulae and blastocysts compared to ejaculated spermatozoa. When a testicular sperm centrosome was replaced by a centrosome from an ejaculated spermatozoon, kinetics of first cell cycle as well as embryo development quality significantly improved and were comparable to data from ejaculated spermatozoa. Results demonstrate for the first time in mammals that maturity of the cat sperm centrosome (likely via epididymal transit) contributes to an enhanced ability of the spermatozoon to produce embryos that develop normally to the morula and blastocyst stages.
    Biology of Reproduction 09/2006; 75(2):252-60. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to mice, in sheep no genome-wide demethylation of the paternal genome occurs within the first postfertilization cell cycle. This difference could be due either to an absence of a sheep demethylase activity that is present in mouse ooplasm or to an increased protection of methylated cytosine residues in sheep sperm. Here, we use interspecies intracytoplasmic sperm injection to demonstrate that sheep sperm DNA can be demethylated in mouse oocytes. Surprisingly, mouse sperm can also be demethylated to a limited extent in sheep oocytes. Our results suggest that the murine demethylation process is facilitated either by a sperm-derived factor or by male pronuclear chromatin composition.
    Proceedings of the National Academy of Sciences 06/2004; 101(20):7636-40. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to define the physiologic needs of domestic cat embryos to facilitate development of a feline-specific culture medium. In a series of factorial experiments, in vivo-matured oocytes (n = 2040) from gonadotropin-treated domestic cats were inseminated in vitro to generate embryos (n = 1464) for culture. In the initial study, concentrations of NaCl (100.0 vs. 120.0 mM), KCl (4.0 vs. 8.0 mM), KH(2)PO(4) (0.25 vs. 1.0 mM), and the ratio of CaCl(2) to MgSO(4)-7H(2)O (1.0:2.0 mM vs. 2.0:1.0 mM) in the medium were evaluated during Days 1-6 (Day 0: oocyte recovery and in vitro fertilization [IVF]) of culture. Subsequent experiments assessed the effects of varying concentrations of carbohydrate (glucose, 1.5, 3.0, or 6.0 mM; l-lactate, 3.0, 6.0, or 12.0 mM; and pyruvate, 0.1 or 1.0 mM) and essential amino acids (EAAs; 0, 0.5, or 1.0x) in the medium during Days 1-3 and Days 3-6 of culture. Inclusion of vitamins (0 vs. 1.0x) and fetal calf serum (FCS; 0 vs. 5% [v/v]) in the medium also was evaluated during Days 3-6. Development and metabolism of IVF embryos on Day 3 or Day 6 were compared to age-matched in vivo embryos recovered from naturally mated queens. A feline-optimized culture medium (FOCM) was formulated based on these results (100.0 mM NaCl, 8.0 mM KCl, 1.0 mM KH(2)PO(4), 2.0 mM CaCl(2), 1.0 mM MgSO(4), 1.5 mM glucose, 6.0 mM L-lactate, 0.1 mM pyruvate, and 0x EAAs with 25.0 mM NaHCO(3), 1.0 mM alanyl-glutamine, 0.1 mM taurine, and 1.0x nonessential amino acids) with 0.4% (w/v) BSA from Days 0-3 and 5% FCS from Days 3-6. Using this medium, ~70% of cleaved embryos developed into blastocysts with profiles of carbohydrate metabolism similar to in vivo embryos. Our results suggest that feline embryos have stage-specific responses to carbohydrates and are sensitive to EAAs but are still reliant on one or more unidentified components of FCS for optimal blastocyst development.
    Biology of Reproduction 06/2007; 76(5):858-70. · 3.45 Impact Factor

Full-text (2 Sources)

Download
51 Downloads
Available from
May 22, 2014