Article

Biochemical and strain properties of CJD prions: complexity versus simplicity

Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière (CRICM), UMRS 975, Equipe "Alzheimer's and Prion Diseases", Paris, France.
Journal of Neurochemistry (Impact Factor: 4.24). 07/2011; 119(2):251-61. DOI: 10.1111/j.1471-4159.2011.07399.x
Source: PubMed

ABSTRACT Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.

1 Follower
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In prion diseases, a major issue in therapeutic research is the variability of the effect between strains. Stimulated by the report of an antiprion effect in a scrapie model and by ongoing international clinical trials using doxycycline, we studied the efficacy of cyclines against the propagation of human prions. First, we successfully propagated various Creutzfeldt-Jakob disease isolates (sporadic, variant and iatrogenic CJD) in neuronal cultures expressing the human prion protein. Then, we found that doxycycline was the most effective compound, with important variations between isolates. Isolates from sporadic CJD, the most common form of prion diseases showed the highest sensitivity.
    The Journal of Infectious Diseases 11/2013; DOI:10.1093/infdis/jit623 · 5.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglial activations have been described in different subtypes of human prion diseases such as sporadic Creutzfeldt-Jakob disease (CJD), variant CJD, Kuru and Gerstmann-Straussler-Scheinker disease (GSS). However, the situation of microglia in other genetic prion diseases such as fatal familial insomnia (FFI) and familial CJD remains less understood. The brain microglia was evaluated comparatively between the FFI, G114V and sCJD cases in the study. Specific Western blots, immunohistochemical and immunofluorescent assays were used to detect the changes of microglia and ELISA tests were used for levels of inflammatory cytokines. Western blots, immunohistochemical and immunofluorescent assays illustrated almost unchanged microglia in the temporal lobes of FFI and G114V gCJD, but obviously increased in those of sCJD. The Iba1-levels maintained comparable in six different brain regions of FFI and G114V cases, including thalamus, cingulate gyrus, frontal cortex, parietal cortex, occipital cortex and temporal cortex. ELISA tests for inflammatory cytokines revealed significantly up-regulated IL-1beta, IL-6 and TNF-alpha in the brain homogenates from sCJD, but not in those from FFI and G114V gCJD. Data here demonstrates silent brain microglia in FFI and G114V gCJD but obviously increased in sCJD, which reflects various pathogenesis of different human prion diseases subtypes.
    Virology Journal 07/2013; 10(1):216. DOI:10.1186/1743-422X-10-216 · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is ß-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease suceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 06/2014; DOI:10.1016/j.meegid.2014.06.010 · 3.26 Impact Factor

Preview

Download
2 Downloads