Article

Biochemical and strain properties of CJD prions: complexity versus simplicity

Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière (CRICM), UMRS 975, Equipe "Alzheimer's and Prion Diseases", Paris, France.
Journal of Neurochemistry (Impact Factor: 4.24). 07/2011; 119(2):251-61. DOI: 10.1111/j.1471-4159.2011.07399.x
Source: PubMed

ABSTRACT Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.

1 Follower
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A few cases of transmissible spongiform encephalopathies in sheep have been described in France in which the protease-resistant prion protein (PrP(res)) exhibited some features in Western blot of experimental bovine spongiform encephalopathy in sheep. Their molecular characteristics were indistinguishable from those produced in the CH1641 experimental scrapie isolate. Four of these CH1641-like isolates were inoculated intracerebrally into wild-type C57Bl/6 mice. In striking contrast to previous results in ovine transgenic mice, CH1641 transmission in wild-type mice was efficient. Several components of the strain signature, that is, PrP(res) profile, brain distribution, and morphology of the deposits of the disease-associated prion protein, had some similarities with "classical" scrapie and clearly differed from both bovine spongiform encephalopathy in sheep and CH1641 transmission in ovine transgenic mice. These results on CH1641-like isolates in wild-type mice may be consistent with the presence in these isolates of mixed conformers with different abilities to propagate and mediate specific disease phenotypes in different species.
    Journal of Neuropathology and Experimental Neurology 02/2012; 71(2):140-7. DOI:10.1097/NEN.0b013e3182439519 · 4.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here the transmission of human prions to 18 new transgenic (Tg) mouse lines expressing 8 unique chimeric human/mouse prion proteins (PrP). Extracts from brains of two patients, who died of sporadic Creutzfeldt-Jakob disease (sCJD), contained either sCJD(MM1) or sCJD(VV2) prion strains and were used for inocula. Mice expressing chimeric PrP showed a direct correlation between expression level and incubation period for sCJD(MM1) prions irrespective of whether the transgene encoded methionine (M) or valine (V) at polymorphic residue 129. Tg mice expressing chimeric transgenes encoding V129 were unexpectedly resistant to infection with sCJD(VV2) prions, and when transmission did occur, it was accompanied by a change in strain type. The transmission of sCJD(MM1) prions was modulated by single amino acid reversions of each human PrP residue in the chimeric sequence. Reverting human residue 137 in the chimeric transgene from I to M prolonged the incubation time for sCJD(MM1) prions by more than 100 days; structural analyses suggest a profound change in the orientation of amino acid side chains with the I→M mutation. These findings argue that changing the surface charge in this region of PrP greatly altered the interaction between PrP isoforms during prion replication. Our studies contend that strain-specified replication of prions is modulated by PrP sequence-specific interactions between the prion precursor PrP(C) and the infectious product PrP(Sc).
    Journal of Virology 03/2012; 86(11):6033-41. DOI:10.1128/JVI.07027-11 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The past 20 years have witnessed a dramatic resurgence of interest in a hitherto obscure neurodegenerative disease, Creutzfeldt-Jakob disease (CJD). This was driven partly by the novelty of the prion hypothesis, which sought to provide an explanation for the pathogenesis of transmissible spongiform encephalopathies, involving a unique epigenetic mechanism, and partly by events in the UK, where an outbreak of a new prion disease in cattle (bovine spongiform encephalopathy or BSE) potentially exposed a large section of the UK population to prion infectivity through a dietary route. The numbers of cases of the resultant novel disease variant CJD (vCJD), have so far been limited and peaked in the UK in the year 2000 and have subsequently declined. However, the effects of BSE and vCJD have been far-reaching. The estimated prevalence of vCJD infection in the UK is substantially higher than the numbers of clinical cases would suggest, posing a difficult dilemma for those involved in blood transfusion, tissue transplantation and cellular therapies. The clinico-pathological phenotype of human prion diseases has come under close scrutiny and molecular classification systems have been developed to account for the different diseases and their phenotypic spectra. Moreover, enhanced human and animal surveillance and better diagnostic tools have identified new human and animal prion diseases. Lastly, as the prion hypothesis has gained widespread acceptance, the concepts involved have been applied to other areas, including extra-chromosomal inheritance in fungi, long-term potentiation in memory formation and the spread of molecular pathology in diverse conditions, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Studies at the molecular and cellular level have helped to provide a better understanding of human prion diseases, aided pathological diagnosis and helped inform public health decision-making.
    Neuropathology 01/2013; 33(3). DOI:10.1111/neup.12016 · 1.80 Impact Factor

Preview

Download
2 Downloads