Article

Extraordinary neoteny of synaptic spines in the human prefrontal cortex.

Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2011; 108(32):13281-6. DOI: 10.1073/pnas.1105108108
Source: PubMed

ABSTRACT The major mechanism for generating diversity of neuronal connections beyond their genetic determination is the activity-dependent stabilization and selective elimination of the initially overproduced synapses [Changeux JP, Danchin A (1976) Nature 264:705-712]. The largest number of supranumerary synapses has been recorded in the cerebral cortex of human and nonhuman primates. It is generally accepted that synaptic pruning in the cerebral cortex, including prefrontal areas, occurs at puberty and is completed during early adolescence [Huttenlocher PR, et al. (1979) Brain Res 163:195-205]. In the present study we analyzed synaptic spine density on the dendrites of layer IIIC cortico-cortical and layer V cortico-subcortical projecting pyramidal neurons in a large sample of human prefrontal cortices in subjects ranging in age from newborn to 91 y. We confirm that dendritic spine density in childhood exceeds adult values by two- to threefold and begins to decrease during puberty. However, we also obtained evidence that overproduction and developmental remodeling, including substantial elimination of synaptic spines, continues beyond adolescence and throughout the third decade of life before stabilizing at the adult level. Such an extraordinarily long phase of developmental reorganization of cortical neuronal circuitry has implications for understanding the effect of environmental impact on the development of human cognitive and emotional capacities as well as the late onset of human-specific neuropsychiatric disorders.

0 Bookmarks
 · 
222 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin-dependent kinase 5 (Cdk5) activity is dependent on its association with 1 of 2 neuron-specific activators, p35 or p39. Cdk5 and its activators play an important role in brain development as well as higher functions like synaptic plasticity, learning, and memory. Reduction in p35 was reported in postmortem schizophrenia brain, in which reduced dendritic spine density was observed. Previous in vitro experiments have shown that Cdk5 is involved in dendritic spine formation, although in vivo evidence is limited. We examined dendritic spine formation in inducible-p35 conditional knockout (p35 cKO); p39 KO mice. When we deleted the p35 gene either during early postnatal days or at adult stage, we observed reduced spine densities of layer V neurons in the cerebral cortex and CA1 pyramidal neurons in the hippocampus. We further generated CA1-specific p35 conditional knockout (CA1-p35 cKO) mice and also CA1-p35 cKO; p39 KO mice in which have specific deletion of p35 in the CA1 region of hippocampus. We found a greater reduction in spine densities in CA1 pyramidal neurons in CA1-p35 cKO; p39 KO mice than in CA1-p35 cKO mice. These results indicate that dendritic spine formation and neuronal maintenance are dependent on Cdk5 activity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Cerebral Cortex 11/2014; · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely-but not only-transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.
    Proceedings of the National Academy of Sciences 11/2014; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atypical antipsychotic drugs (AAPDs) are widely used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of AAPD treatment before the brain is fully developed. Indeed, we and others have previously reported that treatment of adolescent rats with olanzapine (OLA; a widely prescribed AAPD) on postnatal days 28-49, under dosing conditions that approximate those employed therapeutically in humans, causes long-term behavioral and neurobiological perturbations. We have begun to study the mechanisms of these effects. Dopamine (DA) and serotonin (5HT) regulate many neurodevelopmental processes. Currently approved AAPDs exert their therapeutic effects principally through their DAergic activities, although in schizophrenia (SZ) and some other diseases for which AAPDs are prescribed, DAergic dysfunction is accompanied by abnormalities of glutamatergic (GLUergic) and γ-aminobutyric acidergic (GABAergic) transmission. Here, we use proton magnetic resonance spectroscopy ((1)H MRS) to investigate the effects of adolescent OLA administration on GABA and GLU levels. We found that the treatment caused long-term reductions in the levels of both GLU and GABA in the nucleus accumbens (NAc) of adult rats treated with OLA during adolescence. The NAc is a key node in the brain's "reward" system, whose function is also disrupted in schizophrenia. Further research into potential, OLA-induced changes in the levels of GLU and GABA in the NAc and other brain areas, and the dynamics and mechanisms of those changes, are an essential step for devising new adjunct therapies for existing AAPDs and for designing new drugs that increase therapeutic effects and reduce long-term abnormalities when administered to pediatric patients. Copyright © 2014 Elsevier B.V. All rights reserved.
    Schizophrenia Research 12/2014; · 4.43 Impact Factor

Full-text

Download
80 Downloads
Available from
May 23, 2014