Article

Reduced ribosomal protein gene dosage and p53 activation in low-risk myelodysplastic syndrome

Departments of Genetics, Stanford University, Stanford, CA, USA.
Blood (Impact Factor: 10.43). 07/2011; 118(13):3622-33. DOI: 10.1182/blood-2010-11-318584
Source: PubMed

ABSTRACT Reduced gene dosage of ribosomal protein subunits has been implicated in 5q- myelodysplastic syndrome and Diamond Blackfan anemia, but the cellular and pathophysiologic defects associated with these conditions are enigmatic. Using conditional inactivation of the ribosomal protein S6 gene in laboratory mice, we found that reduced ribosomal protein gene dosage recapitulates cardinal features of the 5q- syndrome, including macrocytic anemia, erythroid hypoplasia, and megakaryocytic dysplasia with thrombocytosis, and that p53 plays a critical role in manifestation of these phenotypes. The blood cell abnormalities are accompanied by a reduction in the number of HSCs, a specific defect in late erythrocyte development, and suggest a disease-specific ontogenetic pathway for megakaryocyte development. Further studies of highly purified HSCs from healthy patients and from those with myelodysplastic syndrome link reduced expression of ribosomal protein genes to decreased RBC maturation and suggest an underlying and common pathophysiologic pathway for additional subtypes of myelodysplastic syndrome.

0 Followers
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diamond-Blackfan anemia is a congenital hypoproliferative macrocytic anemia and 5q- syndrome myelodysplastic syndrome is an acquired hypoproliferative macrocytic anemia. Their common erythroid phenotype reflects a shared pathophysiology-haploinsufficiency of one of many ribosomal proteins and somatic deletion of one allele of the ribosomal protein S14 gene, respectively. Although these abnormalities lead to defective ribosome biogenesis, why ribosomal protein hemizygosity results in anemia is not certain. Here, we characterize the hematopoietic phenotype of mice lacking one allele of the ribosomal protein S6 gene. The mice have an erythroid phenotype similar to both Diamond-Blackfan anemia and the 5q- syndrome and lenalidomide therapy improves their anemia.
    Experimental hematology 12/2011; 40(4):290-4. DOI:10.1016/j.exphem.2011.12.003 · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects.
    Physiological Genomics 05/2012; 44(12):638-50. DOI:10.1152/physiolgenomics.00028.2012 · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The clinicopathologic heterogeneity of myelodysplastic syndromes (MDS) is driven by diverse, somatically acquired genetic abnormalities. Recent technological advances have enabled the identification of many new mutations, which have implicated novel pathways in MDS pathogenesis, including RNA splicing and epigenetic regulation of gene expression. Molecular abnormalities, either somatic point mutations or chromosomal lesions, can be identified in the vast majority of MDS cases and underlie specific disease phenotypes. As the full array of molecular abnormalities is characterized, genetic variables are likely to complement standard morphologic evaluation in future MDS classification schemes and risk models. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease Volume 8 is . Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Pathology Mechanisms of Disease 08/2012; 8. DOI:10.1146/annurev-pathol-011811-132436 · 22.13 Impact Factor
Show more