[Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers].

Tsitologiia 01/2011; 53(5):450-6.
Source: PubMed

ABSTRACT The effect of the membrane dipole potential (Phid) on a conductance and a steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate and chloride was shown. The magnitude of Phid was varied with the introduction to membrane bathing solutions of phloretin, which reduces the Phid, and RH 421, increasing the Phid. It was established that in all studied systems the increase in the membrane dipole potential cause a decrease in the steady-state number of open channels. In the systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are in an order of magnitude smaller than in systems containing sodium chloride. At the same time, the conductance (g) of single SRE-channels on the membranes bathed in NaCI solution increases with the increase in Phid, and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the Phid. The latter is due to the lack of cation/anion selectivity of the SRE-channels in these systems. The different channel-forming activity of SRE in the experimental systems is defined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The large intrinsic membrane dipole potential, phi(d), is important for protein insertion and functioning as well as for ion transport across natural and model membranes. However, the origin of phi(d) is controversial. From experiments carried out with lipid monolayers, a significant dependence on the fatty acid chain length is suggested, whereas in experiments with lipid bilayers, the contribution of additional -CH(2)-groups seems negligibly small compared with that of the phospholipid carbonyl groups and lipid-bound water molecules. To compare the impact of the -CH(2)-groups of dipalmitoylphosphatidylcholine (DPPC) near and far from the glycerol backbone, we have varied the structure of DPPC by incorporation of sulfur atoms in place of methylene groups in different positions of the fatty acid chain. The phi(d) of symmetric lipid bilayers containing one heteroatom was obtained from the charge relaxation of oppositely charged hydrophobic ions. We have found that the substitution for a S-atom of a -CH(2)-group decreases phi(d). The effect (deltaphi(d) = -22.6 mV) is most pronounced for S-atoms near the lipid head group while a S-atom substitution in the C(13)- or C(14)-position of the hydrocarbon chain does not effect the bilayer dipole potential. Most probably deltaphi(d) does not originate from an altered dipole potential of the acyl chain containing an heteroatom but is mediated by the disruption of chain packing, leading to a decreased density of lipid dipoles in the membrane.
    Chemistry and Physics of Lipids 09/2002; 117(1-2):19-27. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly reproducible ion channels of the lipopeptide antibiotic syringomycin E demonstrate unprecedented involvement of the host bilayer lipids. We find that in addition to a pronounced influence of lipid species on the open-channel ionic conductance, the membrane lipids play a crucial role in channel gating. The effective gating charge, which characterizes sensitivity of the conformational equilibrium of the syringomycin E channels to the transmembrane voltage, is modified by the lipid charge and lipid dipolar moment. We show that the type of host lipid determines not only the absolute value but also the sign of the gating charge. With negatively charged bilayers, the gating charge sign inverts with increased salt concentration or decreased pH. We also demonstrate that the replacement of lamellar lipid by nonlamellar with the negative spontaneous curvature inhibits channel formation. These observations suggest that the asymmetric channel directly incorporates lipids. The charges and dipoles resulting from the structural inclusion of lipids are important determinants of the overall energetics that underlies channel gating. We conclude that the syringomycin E channel may serve as a biophysical model to link studies of ion channels with those of lipidic pores in membrane fusion.
    Biophysical Journal 05/2002; 82(4):1985-94. · 3.67 Impact Factor