Early calcium dysregulation in Alzheimer's disease: setting the stage for synaptic dysfunction.

Department of Neuroscience, Rosalind Franklin University/the Chicago Medical School, North Chicago, IL 60064, USA.
Science China. Life sciences (Impact Factor: 1.51). 08/2011; 54(8):752-62. DOI: 10.1007/s11427-011-4205-7
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder with no known cure or clear understanding of the mechanisms involved in the disease process. Amyloid plaques, neurofibrillary tangles and neuronal loss, though characteristic of AD, are late stage markers whose impact on the most devastating aspect of AD, namely memory loss and cognitive deficits, are still unclear. Recent studies demonstrate that structural and functional breakdown of synapses may be the underlying factor in AD-linked cognitive decline. One common element that presents with several features of AD is disrupted neuronal calcium signaling. Increased intracellular calcium levels are functionally linked to presenilin mutations, ApoE4 expression, amyloid plaques, tau tangles and synaptic dysfunction. In this review, we discuss the role of AD-linked calcium signaling alterations in neurons and how this may be linked to synaptic dysfunctions at both early and late stages of the disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Because reactive astrocytes are associated with a variety of central nervous system (CNS) disorders, interest in the glial contribution to neuronal injury is exponentially increasing. Astrocytes, the main type of glia in the CNS, form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative processes/diseases and play a crucial role in the glial responses to injury. Most importantly, intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. The propagation of intercellular Ca(2+) waves largely depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease.
    Biochimica et Biophysica Acta 04/2014; 1843(10). DOI:10.1016/j.bbamcr.2014.04.016 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people worldwide. Increasing evidence suggests that formaldehyde might be one of the various pathological mechanisms involved in the process of AD onset. Here, we use an AD mouse model, senescence accelerated mouse-prone 8 strain (SAMP8), to study the relationship between endogenous formaldehyde and impairment of cognition. The Morris water maze test was used to evaluate the spatial learning and memory ability of 3-month-old SAMP8 mice, and we correlated the results with endogenous formaldehyde concentrations in the brain. To investigate the underlying reasons for formaldehyde elevation in neurodegenerative diseases, the expression levels of enzymes involved in formaldehyde metabolism were analyzed, including (anabolic) semicarbazide sensitive amine oxidase (SSAO) and (catabolic) alcohol dehydrogenase III (ADH3). When compared with age-matched SAMR1 mice, we found that in 3-month-old SAMP8 mice the capacity for spatial learning and memory was lower, while brain formaldehyde levels were higher. By using real-time PCR, western blotting, enzyme assay, and immunohistochemistry techniques, we discovered that SSAO expression levels were increased, whereas ADH3 exhibited reduced expression levels of mRNA, protein, and enzyme activity. The imbalance of these metabolic enzymes may represent a causal explanation for the observed formaldehyde elevation in the SAMP8 brain. Such increase could be responsible for the observed tau hyperphosphorylation assumed to result in protein aggregation, ultimately leading to cognitive impairment. Taken together, our study gives new insights into the role of metabolic enzymes in age-related accumulation of formaldehyde, and thus the establishment of neurodegenerative diseases.
    Journal of Alzheimer's disease: JAD 02/2014; 40(4). DOI:10.3233/JAD-131595 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perturbed Endoplasmic Reticulum (ER) calcium (Ca2+) homeostasis emerges as a central player in Alzheimer disease (AD). Accordingly, different studies have reported alterations of the expression and the function of Ryanodine Receptors (RyR) in human AD-affected brains, in cells expressing familial AD-linked mutations on the beta amyloid precursor protein (betaAPP) and presenilins (the catalytic core in gamma-secretase complexes cleaving the betaAPP, thereby generating amyloid beta (Abeta) peptides), as well as in the brain of various transgenic AD mice models. Data converge to suggest that RyR expression and function alteration are associated to AD pathogenesis through the control of: i) betaAPP processing and Abeta peptide production, ii) neuronal death; iii) synaptic function; and iv) memory and learning abilities. In this review, we document the network of evidences suggesting that RyR could play a complex dual "compensatory/protective versus pathogenic" role contributing to the setting of histopathological lesions and synaptic deficits that are associated with the disease stages. We also discuss the possible mechanisms underlying RyR expression and function alterations in AD. Finally, we review recent publications showing that drug-targeting blockade of RyR and genetic manipulation of RyR reduces Abeta production, stabilizes synaptic transmission, and prevents learning and memory deficits in various AD mouse models. Chemically-designed RyR "modulators" could therefore be envisioned as new therapeutic compounds able to delay or block the progression of AD.
    Molecular Neurodegeneration 06/2014; 9(1):21. DOI:10.1186/1750-1326-9-21 · 5.29 Impact Factor


Available from
May 19, 2014