Article

Slug (SNAI2) expression in oral SCC cells results in altered cell-cell adhesion and increased motility.

Oral Biology Department, College of Dentistry, The University of Nebraska Medical Center, Lincoln, NE, USA.
Cell adhesion & migration (Impact Factor: 2.34). 07/2011; 5(4):315-22.
Source: PubMed

ABSTRACT The Snail family of zinc finger transcription factors plays an important role in epithelial to mesenchymal transition (EMT) in a variety of tissues and systems. Slug (SNAI2) expression has been shown to directly contribute to a subset of events required for EMT in events such as re-epithelialization during wound healing and neural crest cell migration. In addition, slug expression was shown to correlate with disease recurrence in head and neck squamous cell carcinoma (HNSCC) patients. Based on this association we chose to specifically examine the effects of exogenous slug expression in HNSCC cells and specifically assess adhesive junction assembly and the motility characteristics in these cells. Slug expression led to changes in adherens junction and desmosome assembly characterized by a classical cadherin switch and loss of desmosome assembly. Additionally, we performed gene expression profiling to identify novel slug dependent gene expression changes in a HNSCC cell line. In addition to genes known to be altered during EMT, we identified a novel set of Slug responsive genes that will provide a better understanding of slug overexpression during EMT and HNSCC progression.

0 Bookmarks
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder. The most common mutation is a c.2204+6T>C transition in the 5' splice site (5'ss) of IKBKAP intron 20, which causes a tissue-specific skipping of exon 20, resulting in lower synthesis of IKAP/hELP1 protein. To better understand the specificity of neuron loss in FD, we modeled the molecular mechanisms of IKBKAP mRNA splicing by studying human olfactory ecto-mesenchymal stem cells (hOE-MSCs) derived from FD patient nasal biopsies. We explored how the modulation of IKBKAP mRNA alternative splicing impacts the transcriptome at the genome-wide level. We found that the FD transcriptional signature was highly associated with biological functions related to the development of the nervous system. In addition, we identified target genes of kinetin, a plant cytokinin that corrects IKBKAP mRNA splicing and increases the expression of IKAP/hELP1. We identified this compound as a putative regulator of splicing factors and added new evidence for a sequence-specific correction of splicing. In conclusion, hOE-MSCs isolated from FD patients represent a promising avenue for modeling the altered genetic expression of FD, demonstrating a methodology that can be applied to a host of other genetic disorders to test the therapeutic potential of candidate molecules.
    Human Mutation 12/2011; 33(3):530-40. · 5.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of highly pathogenic breast cancer cell types are the triple negative (negative in the expression of estrogen, progesterone, and ERBB2 receptors) breast cancer cells. These cells are highly motile and metastatic and are characterized by high levels of the metastasis regulator protein SLUG. Using isogenic breast cancer cell systems we have shown here that high motility of these cells is directly correlated with the levels of the SLUG in these cells. Because epithelial/mesenchymal cell motility is known to be negatively regulated by the catenin protein plakoglobin, we postulated that the transcriptional repressor protein SLUG increases the motility of the aggressive breast cancer cells through the knockdown of the transcription of the plakoglobin gene. We found that SLUG inhibits the expression of plakoglobin gene directly in these cells. Overexpression of SLUG in the SLUG-deficient cancer cells significantly decreased the levels of mRNA and protein of plakoglobin. On the contrary, knockdown of SLUG in SLUG-high cancer cells elevated the levels of plakoglobin. Blocking of SLUG function with a double-stranded DNA decoy that competes with the E2-box binding of SLUG also increased the levels of plakoglobin mRNA, protein, and promoter activity in the SLUG-high triple negative breast cancer cells. Overexpression of SLUG in the SLUG-deficient cells elevated the motility of these cells. Knockdown of plakoglobin in these low motility non-invasive breast cancer cells rearranged the actin filaments and increased the motility of these cells. Forced expression of plakoglobin in SLUG-high cells had the reverse effects on cellular motility. This study thus implicates SLUG-induced repression of plakoglobin as a motility determinant in highly disseminating breast cancer.
    Journal of Biological Chemistry 04/2012; 287(23):19472-86. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Head and neck squamous cell carcinoma (HNSCC) is the 6th commonest cancer worldwide. Relapse, thought to involve cancer stem(-like) cells (CSCs), and the development of metastases are common and survival rates remain low. Epithelial-to-mesenchymal transition (EMT) is a key event in metastasis and increasing evidence suggests a link between EMT and CSCs. MicroRNAs regulate multiple cellular processes including EMT and have been implicated in a CSC phenotype. This review aims to highlight key events that are involved in EMT, discusses their relevance in HNSCC progression and metastasis and explores the possibility of targeting EMT as a novel therapy in HNSCC.
    Cancer letters 07/2012; · 5.02 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from
Oct 9, 2014